• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • Tagged with
  • 119
  • 119
  • 119
  • 119
  • 18
  • 9
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Weakly supervised learning for unconstrained face processing

Huang, Gary B 01 January 2012 (has links)
Machine face recognition has traditionally been studied under the assumption of a carefully controlled image acquisition process. By controlling image acquisition, variation due to factors such as pose, lighting, and background can be either largely eliminated or specifically limited to a study over a discrete number of possibilities. Applications of face recognition have had mixed success when deployed in conditions where the assumption of controlled image acquisition no longer holds. This dissertation focuses on this unconstrained face recognition problem, where face images exhibit the same amount of variability that one would encounter in everyday life. We formalize unconstrained face recognition as a binary pair matching problem (verification), and present a data set for benchmarking performance on the unconstrained face verification task. We observe that it is comparatively much easier to obtain many examples of unlabeled face images than face images that have been labeled with identity or other higher level information, such as the position of the eyes and other facial features. We thus focus on improving unconstrained face verification by leveraging the information present in this source of weakly supervised data. We first show how unlabeled face images can be used to perform unsupervised face alignment, thereby reducing variability in pose and improving verification accuracy. Next, we demonstrate how deep learning can be used to perform unsupervised feature discovery, providing additional image representations that can be combined with representations from standard hand-crafted image descriptors, to further improve recognition performance. Finally, we combine unsupervised feature learning with joint face alignment, leading to an unsupervised alignment system that achieves gains in recognition performance matching that achieved by supervised alignment.
52

A probabilistic model of hierarchical music analysis

Kirlin, Phillip B 01 January 2014 (has links)
Schenkerian music theory supposes that Western tonal compositions can be viewed as hierarchies of musical objects. The process of Schenkerian analysis reveals this hierarchy by identifying connections between notes or chords of a composition that illustrate both the small- and large-scale construction of the music. We present a new probabilistic model of this variety of music analysis, details of how the parameters of the model can be learned from a corpus, an algorithm for deriving the most probable analysis for a given piece of music, and both quantitative and human-based evaluations of the algorithm's performance. In addition, we describe the creation of the corpus, the first publicly available data set to contain both musical excerpts and corresponding computer-readable Schenkerian analyses. Combining this corpus with the probabilistic model gives us the first completely data-driven computational approach to hierarchical music analysis.
53

Combinatorial Markov Random Fields and their applications to information organization

Bekkerman, Ron 01 January 2008 (has links)
We propose a new type of undirected graphical models called a Combinatorial Markov Random Field (Comraf) and discuss its advantages over existing graphical models. We develop an efficient inference methodology for Comrafs based on combinatorial optimization of information-theoretic objective functions; both global and local optimization schema are discussed. We apply Comrafs to multi-modal clustering tasks: standard (unsupervised) clustering, semi-supervised clustering, interactive clustering, and one-class clustering. For the one-class clustering task, we analytically show that the proposed optimization method is optimal under certain simplifying assumptions. We empirically demonstrate the power of Comraf models by comparing them to other state-of-the-art machine learning techniques, both in text clustering and image clustering domains. For unsupervised clustering, we show that Comrafs consistently and significantly outperform three previous state-of-the-art clustering techniques on six real-world textual datasets. For semi-supervised clustering, we show that the Comraf model is superior to a well-known constrained optimization method. For interactive clustering, Comraf obtains higher accuracy than a Support Vector Machine, trained on a large amount of labeled data. For one-class clustering, Comrafs demonstrate superior performance over two previously proposed methods. We summarize our thesis by giving a comprehensive recipe for machine learning modeling with Comrafs.
54

A statistical approach to improving accuracy in classifier ensembles

Holness, Gary F 01 January 2008 (has links)
Popular ensemble classifier induction algorithms, such as bagging and boosting, construct the ensemble by optimizing component classifiers in isolation. The controllable degrees of freedom in an ensemble include the instance selection and feature selection for each component classifier. Because their degrees of freedom are uncoupled, the component classifiers are not built to optimize performance of the ensemble, rather they are constructed by minimizing individual training loss. Recent work in the ensemble literature contradicts the notion that a combination of the best individually performing classifiers results in lower ensemble error rates. Zenobi et al. demonstrated that ensemble construction should consider a classifier's contribution to ensemble accuracy and diversity even at the expense of individual classifier performance. To tradeoff individual accuracy against ensemble accuracy and diversity, a component classifier inducer requires knowledge of the choices made by the other ensemble members. We introduce an approach, called DiSCO, that exercises direct control over the tradeoff between diversity and error by sharing ensemble-wide information on instance selection during training. A classifier's contribution to ensemble accuracy and diversity can be measured as it is constructed in isolation, but without sharing information among its peers in the ensemble during training, nothing can be done to control it. In this work, we explore a method for training the component classifiers collectively by sharing information about training set selection. This allows our algorithm to build ensembles whose component classifiers select complementary error distributions that maximize diversity while minimizing ensemble error directly. Treating ensemble construction as an optimization problem, we explore approaches using local search, global search and stochastic methods. Using this approach we can improve ensemble classifier accuracy over bagging and boosting on a variety of data, particularly those for which the classes are moderately overlapping. In ensemble classification research, how to use diversity to build effective classifier teams is an open question. We also provide a method that uses entropy as a measure of diversity to train an ensemble classifier.
55

Basis construction and utilization for Markov decision processes using graphs

Johns, Jeffrey T 01 January 2010 (has links)
The ease or difficulty in solving a problem strongly depends on the way it is represented. For example, consider the task of multiplying the numbers 12 and 24. Now imagine multiplying XII and XXIV. Both tasks can be solved, but it is clearly more difficult to use the Roman numeral representations of twelve and twenty-four. Humans excel at finding appropriate representations for solving complex problems. This is not true for artificial systems, which have largely relied on humans to provide appropriate representations. The ability to autonomously construct useful representations and to efficiently exploit them is an important challenge for artificial intelligence. This dissertation builds on a recently introduced graph-based approach to learning representations for sequential decision-making problems modeled as Markov decision processes (MDPs). Representations, or basis functions, for MDPs are abstractions of the problem’s state space and are used to approximate value functions, which quantify the expected long-term utility obtained by following a policy. The graph-based approach generates basis functions capturing the structure of the environment. Handling large environments requires efficiently constructing and utilizing these functions. We address two issues with this approach: (1) scaling basis construction and value function approximation to large graphs/data sets, and (2) tailoring the approximation to a specific policy’s value function. We introduce two algorithms for computing basis functions from large graphs. Both algorithms work by decomposing the basis construction problem into smaller, more manageable subproblems. One method determines the subproblems by enforcing block structure, or groupings of states. The other method uses recursion to solve subproblems which are then used for approximating the original problem. Both algorithms result in a set of basis functions from which we employ basis selection algorithms. The selection algorithms represent the value function with as few basis functions as possible, thereby reducing the computational complexity of value function approximation and preventing overfitting. The use of basis selection algorithms not only addresses the scaling problem but also allows for tailoring the approximation to a specific policy. This results in a more accurate representation than obtained when using the same subset of basis functions irrespective of the policy being evaluated. To make effective use of the data, we develop a hybrid least-squares algorithm for setting basis function coefficients. This algorithm is a parametric combination of two common least-squares methods used for MDPs. We provide a geometric and analytical interpretation of these methods and demonstrate the hybrid algorithm’s ability to discover improved policies. We also show how the algorithm can include graph-based regularization to help with sparse samples from stochastic environments. This work investigates all aspects of linear value function approximation: constructing a dictionary of basis functions, selecting a subset of basis functions from the dictionary, and setting the coefficients on the selected basis functions. We empirically evaluate each of these contributions in isolation and in one combined architecture.
56

Unified detection and recognition for reading text in scene images

Weinman, Jerod J 01 January 2008 (has links)
Although an automated reader for the blind first appeared nearly two-hundred years ago, computers can currently "read" document text about as well as a seven-year-old. Scene text recognition brings many new challenges. A central limitation of current approaches is a feed-forward, bottom-up, pipelined architecture that isolates the many tasks and information involved in reading. The result is a system that commits errors from which it cannot recover and has components that lack access to relevant information. We propose a system for scene text reading that in its design, training, and operation is more integrated. First, we present a simple contextual model for text detection that is ignorant of any recognition. Through the use of special features and data context, this model performs well on the detection task, but limitations remain due to the lack of interpretation. We then introduce a recognition model that integrates several information sources, including font consistency and a lexicon, and compare it to approaches using pipelined architectures with similar information. Next we examine a more unified detection and recognition framework where features are selected based on the joint task of detection and recognition, rather than each task individually. This approach yields better results with fewer features. Finally, we demonstrate a model that incorporates segmentation and recognition at both the character and word levels. Text with difficult layouts and low resolution are more accurately recognized by this integrated approach. By more tightly coupling several aspects of detection and recognition, we hope to establish a new unified way of approaching the problem that will lead to improved performance. We would like computers to become accomplished grammar-school level readers.
57

Behavioral building blocks for autonomous agents: Description, identification, and learning

Simsek, Ozgur 01 January 2008 (has links)
The broad problem I address in this dissertation is design of autonomous agents that can efficiently learn how to achieve desired behaviors in large, complex environments. I focus on one essential design component: the ability to form new behavioral units, or skills, from existing ones. I propose a characterization of a useful class of skills in terms of general properties of an agent's interaction with its environment—in contrast to specific properties of a particular environment—and I introduce methods that can be used to identify and acquire such skills autonomously.
58

Agent interactions in decentralized environments

Allen, Martin William 01 January 2009 (has links)
The decentralized Markov decision process (Dec-POMDP) is a powerful formal model for studying multiagent problems where cooperative, coordinated action is optimal, but each agent acts based on local data alone. Unfortunately, it is known that Dec-POMDPs are fundamentally intractable: they are NEXP-complete in the worst case, and have been empirically observed to be beyond feasible optimal solution. To get around these obstacles, researchers have focused on special classes of the general Dec-POMDP problem, restricting the degree to which agent actions can interact with one another. In some cases, it has been proven that these sorts of structured forms of interaction can in fact reduce worst-case complexity. Where formal proofs have been lacking, empirical observations suggest that this may also be true for other cases, although less is known precisely. This thesis unifies a range of this existing work, extending analysis to establish novel complexity results for some popular restricted-interaction models. We also establish some new results concerning cases for which reduced complexity has been proven, showing correspondences between basic structural features and the potential for dimensionality reduction when employing mathematical programming techniques. As our new complexity results establish that worst-case intractability is more widespread than previously known, we look to new ways of analyzing the potential average-case difficulty of Dec-POMDP instances. As this would be extremely difficult using the tools of traditional complexity theory, we take a more empirical approach. In so doing, we identify new analytical measures that apply to all Dec-POMDPs, whatever their structure. These measures allow us to identify problems that are potentially easier to solve on average, and validate this claim empirically. As we show, the performance of well-known optimal dynamic programming methods correlates with our new measure of difficulty. Finally, we explore the approximate case, showing that our measure works well as a predictor of difficulty there, too, and provides a means of setting algorithm parameters to achieve far more efficient performance.
59

Paying attention to what matters: Observation abstraction in partially observable environments

Wolfe, Alicia Peregrin 01 January 2010 (has links)
Autonomous agents may not have access to complete information about the state of the environment. For example, a robot soccer player may only be able to estimate the locations of other players not in the scope of its sensors. However, even though all the information needed for ideal decision making cannot be sensed, all that is sensed is usually not needed. The noise and motion of spectators, for example, can be ignored in order to focus on the game field. Standard formulations do not consider this situation, assuming that all the can be sensed must be included in any useful abstraction. This dissertation extends the Markov Decision Process Homomorphism framework (Ravindran, 2004) to partially observable domains, focusing specically on reducing Partially Observable Markov Decision Processes (POMDPs) when the model is known. This involves ignoring aspects of the observation function which are irrelevant to a particular task. Abstraction is particularly important in partially observable domains, as it enables the formation of a smaller domain model and thus more efficient use of the observed features.
60

WPCA| The Wreath Product Cognitive Architecture

Joshi, Anshul 11 February 2017 (has links)
<p> We propose to examine a representation which features combined action and perception signals, i.e., instead of having a purely geometric representation of the perceptual data, we include the motor actions, e.g., aiming a camera at an object, which are also actions that generate the particular shape. This generative perception-action representation uses Leyton&rsquo;s cognitive representation based on wreath products. The wreath product is a special kind of group which captures information through symmetries on the sensorimotor data. The key insight is the bundling of actuation and perception data together in order to capture the cognitive structure of interactions with the world. This involves developing algorithms and methods: (1) to perform symmetry detection and parsing, (2) to represent and characterize uncertainties in the data and representations, and (3) to provide an overall cognitive architecture for a robot agent. We demonstrate these functions in 2D text classification, as well as on 3D data, on a real robot operating according to a well-defined experimental protocol for benchmarking indoor navigation, along with capabilities for multirobot communication and knowledge sharing. A cognitive architecture called the <i>Wreath Product Cognitive Architecture</i> is developed to support this approach.</p>

Page generated in 0.6735 seconds