161 |
Development of a Water Cloud Radiance Model for Use in Training an Artificial Neural Network to Recover Cloud Properties from Sun Photometer ObservationsMeehan, Patrick James 09 June 2021 (has links)
As the planetary climate continues to evolve, it is important to build an accurate long-term climate record. State-of-the-art atmospheric science requires a variety of approaches to the measurement of the atmospheric structure and composition. This thesis supports the possibility of inferring cloud properties from sun photometer observations of the cloud solar aureole using an artificial neural network (ANN). Training of an ANN requires a large number of input and output parameter sets. A cloud radiance model is derived that takes into consideration the cloud depth, the mean size of the cloud water particles, and the cloud liquid water content. The cloud radiance model derived here is capable of considering the wavelength of the incident sunlight and the cloud lateral dimensions as parameters; however, here we consider only one wavelength—550 nm—and one lateral dimension—500 m—to demonstrate its performance. The cloud radiance model is then used to generate solar aureole profiles corresponding to the cloud parameters as they would be observed using a sun photometer. Coefficients representative of the solar aureole profiles may then be used as inputs to a trained ANN to infer the parameters used to generate the profile. This process is demonstrated through examples. A manuscript submitted for possible publication based on an early version of the cloud radiance model was deemed naïve by reviewers, ultimately leading to improvements documented here. / Master of Science / The Earth's climate is driven by heat from the sun and the exchange of heat between the Earth and space. The role of clouds is paramount in this process. One aspect of "cloud forcing" is cloud structure and composition. Required measures may be obtained by satellite or surface-based observations. Described here is the creation of a numerical model that calculates the disposition of individual bundles of light within water clouds. The clouds created in the model are all described by the mean size of the cloud water droplets, the amount of water in the cloud, and cloud depth. Changing these factors relative to each other changes the amount of light that traverses the cloud and the angle at which the individual bundles of light leave the cloud as measured using a device called a sun photometer. The measured amount and angle of bundles of light leaving the cloud are used to recover the parameters that characterize the cloud; i.e., the size of the cloud water droplets, the amount of water in the cloud, and the cloud depth. Two versions of the cloud radiance model are described.
|
162 |
Enhancing Privacy in Federated Learning: Mitigating Model Inversion Attacks through Selective Model Transmission and Algorithmic ImprovementsJonsson, Isak January 2024 (has links)
This project aims to identify a sustainable way to construct and train machine learning models. A crucial factor in creating effective machine learning models lies in having access to vast amounts of data. However, this can pose a challenge due to the confidentiality and dispersion of data across various entities. Collecting all the data can thus become a security concern, as transmitting it to a centralized computing location may expose the data to security risks. One solution to this issue is federated learning, which utilizes locally trained AI models. Instead of transmitting data to a centralized computing location, this approach entails sending locally trained AI models and combining them into a global model. In recent years, a method called Model Inversion Attacks has emerged, revealing their potential risk in the context of extracting training data from trained AI models. This methodology potentially heightens the vulnerability of sending models instead of data, posing a security risk. In this project, various Model Inversion Attack methodologies will be examined to further understand the risk of sending models instead of data. The papers examined showed some results of extracting data from trained AI models, although they do not raise significant concerns. Nonetheless, future research in MIA may create security concerns when sending models between parties. Sending parts of the locally trained models to the global model effectively neutralizes the effectiveness of all the examined Model Inversion Attack studies. However, from the results presented in this project, it is evident that challenges persist when only sending parts of a trained model. The challenge was to construct a usable federated learning model while only sending parts of a trained model. To achieve a good federated learning model, several adjustments had to be made to the algorithm, which showed some promising results for the future of federated learning.
|
163 |
Machine-Learning based tool to predict Tire Noise using both Tire and Pavement ParametersSpies, Lucas Daniel 10 July 2019 (has links)
Tire-Pavement Interaction Noise (TPIN) becomes the main noise source contributor for passenger vehicles traveling at speeds above 40 kph. Therefore, it represents one of the main contributors to noise environmental pollution in residential areas nearby highways. TPIN has been subject of exhaustive studies since the 1970s. Still, almost 50 years later, there is still not an accurate way to model it. This is a consequence of a large number of noise generation mechanisms involved in this phenomenon, and their high complexity nature. It is acknowledged that the main noise mechanisms involve tire vibration, and air pumping within the tire tread and pavement surface. Moreover, TPIN represents the only vehicle noise source strongly affected by an external factor such as pavement roughness. For the last decade, new machine learning algorithms to model TPIN have been implemented. However, their development relay on experimental data, and do not provide strong physical insight into the problem. This research studied the correct configuration of such tools. More specifically, Artificial Neural Network (ANN) configurations were studied. Their implementation was based on the problem requirements (acoustic sound pressure prediction). Moreover, a customized neuron configuration showed improvements on the ANN TPIN prediction capabilities. During the second stage of this thesis, tire noise test was undertaken for different tires at different pavements surfaces on the Virginia Tech SMART road. The experimental data was used to develop an approach to account for the pavement profile when predicting TPIN. Finally, the new ANN configuration, along with the approach to account for pavement roughness were complemented using previous work to obtain what is the first reasonable accurate and complete tool to predict tire noise. This tool uses as inputs: 1) tire parameters, 2) pavement parameters, and 3) vehicle speed. Tire noise narrowband spectra for a frequency range of 400-1600 Hz is obtained as a result. / Master of Science / Tire-Pavement Interaction Noise (TPIN) becomes the main noise source contributor for passenger vehicles traveling at speeds above 40 kph. Therefore, it represents one of the main contributors to noise environmental pollution in residential areas nearby highways. TPIN has been subject of exhaustive studies since the 1970s. Still, almost 50 years later, there is still not an accurate way to model it. This is a consequence of a large number of noise generation mechanisms involved in this phenomenon, and their high complexity nature. It is acknowledged that the main noise mechanisms involve tire vibration, and air pumping within the tire tread and pavement surface. Moreover, TPIN represents the only vehicle noise source strongly affected by an external factor such as pavement roughness. For the last decade, machine learning algorithms, based on the human brain structure, have been implemented to model TPIN. However, their development relay on experimental data, and do not provide strong physical insight into the problem. This research focused on the study of the correct configuration of such machine learning algorithms applied to the very specific task of TPIN prediction. Moreover, a customized configuration showed improvements on the TPIN prediction capabilities of these algorithms. During the second stage of this thesis, tire noise test was undertaken for different tires at different pavements surfaces on the Virginia Tech SMART road. The experimental data was used to develop an approach to account for the pavement roughness when predicting TPIN. Finally, the new machine learning algorithm configuration, along with the approach to account for pavement roughness were complemented using previous work to obtain what is the first reasonable accurate and complete computational tool to predict tire noise. This tool uses as inputs: 1) tire parameters, 2) pavement parameters, and 3) vehicle speed.
|
164 |
New Computational Methodologies for Microstructure QuantificationCatania, Richard Knight 26 May 2022 (has links)
This work explores physics-based and data-driven methods for material property prediction for metallic microstructures while indicating the context and benefit for microstructure- sensitive design. From this, the use of shape moment invariants is offered as solution to quantifying microstructure topology numerically using images. This offers a substantial benefit for computational time since image data is converted to numeric values. The goal of quantifying the image data is to help index grains based on their crystallographic orientation. Additionally, individual grains are isolated in order to investigate the effect of their shapes. After the microstructures are quantified, two methods for identifying the grain boundaries are proposed to make a more comprehensive approach to material property prediction. The grain boundaries as well as the grains of the quantified image are used to train artificial neural networks capable of predicting the material properties of the material. This prediction technique can be used as a tool for a microstructure-sensitive approach to design subtractively manufactured and Laser Engineered Net Shaping (LENS)-produced metallic materials. / Master of Science / Material properties are dependent on the underlying microstructural features. This work pro- poses numerical methods to quantify topology and grain boundaries of metallic microstruc- tures by developing physics-based and data-driven techniques for subtractively manufactured and Laser Engineered Net Shaping (LENS)-produced materials.
|
165 |
Scalability Analysis of Synchronous Data-Parallel Artificial Neural Network (ANN) LearnersSun, Chang 14 September 2018 (has links)
Artificial Neural Networks (ANNs) have been established as one of the most important algorithmic tools in the Machine Learning (ML) toolbox over the past few decades. ANNs' recent rise to widespread acceptance can be attributed to two developments: (1) the availability of large-scale training and testing datasets; and (2) the availability of new computer architectures for which ANN implementations are orders of magnitude more efficient. In this thesis, I present research on two aspects of the second development. First, I present a portable, open source implementation of ANNs in OpenCL and MPI. Second, I present performance and scaling models for ANN algorithms on state-of-the-art Graphics Processing Unit (GPU) based parallel compute clusters. / Master of Science / Artificial Neural Networks (ANNs) have been established as one of the most important algorithmic tools in the Machine Learning (ML) toolbox over the past few decades. ANNs’ recent rise to widespread acceptance can be attributed to two developments: (1) the availability of large-scale training and testing datasets; and (2) the availability of new computer architectures for which ANN implementations are orders of magnitude more efficient. In this thesis, I present research on two aspects of the second development. First, I present a portable, open source implementation of ANNs in OpenCL and MPI. Second, I present performance and scaling models for ANN algorithms on state-of-the-art Graphics Processing Unit (GPU) based parallel compute clusters.
|
166 |
Modeling and simulation of VMD desalination process by ANNCao, W., Liu, Q., Wang, Y., Mujtaba, Iqbal 21 August 2015 (has links)
Yes / In this work, an artificial neural network (ANN) model based on the experimental data was developed to study the performance of vacuum membrane distillation (VMD) desalination process under different operating parameters such as the feed inlet temperature, the vacuum pressure, the feed flow rate and the feed salt concentration. The proposed model was found to be capable of predicting accurately the unseen data of the VMD desalination process. The correlation coefficient of the overall agreement between the ANN predictions and experimental data was found to be more than 0.994. The calculation value of the coefficient of variation (CV) was 0.02622, and there was coincident overlap between the target and the output data from the 3D generalization diagrams. The optimal operating conditions of the VMD process can be obtained from the performance analysis of the ANN model with a maximum permeate flux and an acceptable CV value based on the experiment.
|
167 |
Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactorsAli, Hany S.M., Blagden, Nicholas, York, Peter, Amani, Amir, Brook, Toni 2009 June 1928 (has links)
No / This study employs artificial neural networks (ANNs) to create a model to identify relationships between
variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were
saturation levels of prednisolone, solvent and antisolvent flowrates, microreactor inlet angles and internal
diameters, while particle size was the single output. ANNs software was used to analyse a set of data
obtained by random selection of the variables. The developed model was then assessed using a separate
set of validation data and provided good agreement with the observed results. The antisolvent flow rate
was found to have the dominant role on determining final particle size.
|
168 |
Calibration of an Artificial Neural Network for Predicting Development in Montgomery County, Virginia: 1992-2001Thekkudan, Travis Francis 18 July 2008 (has links)
This study evaluates the effectiveness of an artificial neural network (ANN) to predict locations of urban change at a countywide level by testing various calibrations of the Land Transformation Model (LTM). It utilizes the Stuttgart Neural Network Simulator (SNNS), a common medium through which ANNs run a back-propagation algorithm, to execute neural net training.
This research explores the dynamics of socioeconomic and biophysical variables (derived from the 1990 Comprehensive Plan) and how they affect model calibration for Montgomery County, Virginia. Using NLCD Retrofit Land Use data for 1992 and 2001 as base layers for urban change, we assess the sensitivity of the model with policy-influenced variables from data layers representing road accessibility, proximity to urban lands, distance from urban expansion areas, slopes, and soils. Aerial imagery from 1991 and 2002 was used to visually assess changes at site-specific locations.
Results show a percent correct metric (PCM) of 32.843% and a Kappa value of 0.319. A relative operating characteristic (ROC) value of 0.660 showed that the model predicted locations of change better than chance (0.50). It performs consistently when compared to PCMs from a logistic regression model, 31.752%, and LTMs run in the absence of each driving variable ranging 27.971% – 33.494%. These figures are similar to results from other land use and land cover change (LUCC) studies sharing comparable landscape characteristics. Prediction maps resulting from LTM forecasts driven by the six variables tested provide a satisfactory means for forecasting change inside of dense urban areas and urban fringes for countywide urban planning. / Master of Science
|
169 |
Medical Outcome Prediction: A Hybrid Artificial Neural Networks ApproachShadabi, Fariba, N/A January 2007 (has links)
This thesis advances the understanding of the application of artificial neural networks
ensemble to clinical data by addressing the following fundamental question: What is the
potentiality of an ensemble of neural networks models as a filter and classifier in a
complex clinical situation?
A novel neural networks ensemble classification model called Rules and
Information Driven by Consistency in Artificial Neural Networks Ensemble (RIDCANNE)
is developed for the purpose of prediction of medical outcomes or events, such
as kidney transplants. The proposed classification model is based on combination of
initial data preparations, preliminary classification by ensembles of Neural Networks,
and generation of new training data based on criteria of highly accuracy and model
agreement. Furthermore, it can also generate decision tree classification models to
provide classification of data and the prediction results. The case studies described in
this thesis are from a kidney transplant database and two well-known collections of
benchmark data known as the Pima Indian Diabetes and Wisconsin Cancer datasets. An
implication of this study is that further attention needs to be given to both data
collection and preparation stages. This study revealed that even neural network
ensemble models that are known for their strong generalization ability might not be able
to provide a high level of accuracy for complex, noisy and incomplete clinical data.
However, by using a selective subset of data points, it is possible to improve the overall
accuracy.
In summary, the research conducted for this thesis advances the current clinical
data preparation and classification techniques in which the task is to extract patterns that
contain higher information content from a sea of noisy and incomplete clinical data, and
build accurate and transparent classifiers. The RIDC-ANNE approach improves an
analyst�s ability to better understand the data. Furthermore, it shows great promise for
use in clinical decision making systems. It can provide us with a valuable data mining
tool with great research and commercial potential.
|
170 |
Reservoir-computing-based, biologically inspired artificial neural networks and their applications in power systemsDai, Jing 05 April 2013 (has links)
Computational intelligence techniques, such as artificial neural networks (ANNs), have been widely used to improve the performance of power system monitoring and control. Although inspired by the neurons in the brain, ANNs are largely different from living neuron networks (LNNs) in many aspects. Due to the oversimplification, the huge computational potential of LNNs cannot be realized by ANNs. Therefore, a more brain-like artificial neural network is highly desired to bridge the gap between ANNs and LNNs.
The focus of this research is to develop a biologically inspired artificial neural network (BIANN), which is not only biologically meaningful, but also computationally powerful. The BIANN can serve as a novel computational intelligence tool in monitoring, modeling and control of the power systems.
A comprehensive survey of ANNs applications in power system is presented. It is shown that novel types of reservoir-computing-based ANNs, such as echo state networks (ESNs) and liquid state machines (LSMs), have stronger modeling capability than conventional ANNs. The feasibility of using ESNs as modeling and control tools is further investigated in two specific power system applications, namely, power system nonlinear load modeling for true load harmonic prediction and the closed-loop control of active filters for power quality assessment and enhancement. It is shown that in both applications, ESNs are capable of providing satisfactory performances with low computational requirements.
A novel, more brain-like artificial neural network, i.e. biologically inspired artificial neural network (BIANN), is proposed in this dissertation to bridge the gap between ANNs and LNNs and provide a novel tool for monitoring and control in power systems. A comprehensive survey of the spiking models of living neurons as well as the coding approaches is presented to review the state-of-the-art in BIANN research. The proposed BIANNs are based on spiking models of living neurons with adoption of reservoir-computing approaches. It is shown that the proposed BIANNs have strong modeling capability and low computational requirements, which makes it a perfect candidate for online monitoring and control applications in power systems.
BIANN-based modeling and control techniques are also proposed for power system applications. The proposed modeling and control schemes are validated for the modeling and control of a generator in a single-machine infinite-bus system under various operating conditions and disturbances. It is shown that the proposed BIANN-based technique can provide better control of the power system to enhance its reliability and tolerance to disturbances.
To sum up, a novel, more brain-like artificial neural network, i.e. biologically inspired artificial neural network (BIANN), is proposed in this dissertation to bridge the gap between ANNs and LNNs and provide a novel tool for monitoring and control in power systems. It is clearly shown that the proposed BIANN-based modeling and control schemes can provide faster and more accurate control for power system applications.
The conclusions, the recommendations for future research, as well as the major contributions of this research are presented at the end.
|
Page generated in 0.0571 seconds