91 |
Re-use of South African fly ash for CO2 capture and brine remediation.Muriithi, Grace Nyambura January 2013 (has links)
Philosophiae Doctor - PhD / Coal combustion accounts for 95% of electricity generation in South Africa while globally coal combustion for energy generation stands at 42%. It has been predicted that coal utilization for energy generation will continue due to its low cost and availability in huge quantities in different parts of the world. Additionally brine and gaseous emissions are produced in the power generation and coal combustion processes. In fact, it has been established that CO2 emissions from power plants are the main cause of the green-house effect leading to global
warming. Mitigation of the effects of disposal of fly ash, brine and CO2 emissions is critical for sustainable energy generation from coal and environmental protection. The study investigated whether South African coal fly ash could be used for brine remediation and CO2 capture using fly ash based hydrotalcites and zeolites. Four main objectives were investigated. These were; firstly, to compare the natural CO2
capture potential of a power station ash dam with an accelerated ex-situ mineral carbonation process. Secondly, to probe the effect of accelerated ex-situ mineral carbonation on brine quality with regards to major, minor and trace elements concentration. Furthermore, the study investigated the feasibility of synthesizing hydrotalcites from fly ash by optimizing the synthesis parameters such as acid
concentration, aging time, aging temperature, pH during aging, crystallization time and crystallization temperature. Finally the study compared the CO2 adsorption capacities of the fly ash based hydrotalcites with fly ash based zeolites NaA, and NaX. The natural carbonation potential of the wet disposed ash dam at Secunda was investigated by coring a 20 year old dam. Three cores (SI, S2 and S3) were obtained by air flush coring the dam along a geophysical line and establishing the geophysical profile of the three cores. The surface of the three cores was of medium resistivity with values between 9.3 and 12.2 nm while the midsections were of low resistivity with values ranging between 4 and 7 nm. The base section of core SI had a resistivity of 28.3 nm, that of S2 was between 16.2 and 21.4 nm and that of S3 between 12.2 and 16.2 nm; implying that SI had the lowest salt load while S3 had the highest salt content. Moisture content was observed to be high deeper down the profiles of S2 and S3 with samples appearing water logged while SI had the highest moisture content at the surface showing the
inhomogeneity of the ash dam. The morphology of fresh fly ash taken from the ash collection hoppers at Secunda was observed to be spherical. Weathered ash from the ash dam showed irregularly agglomerated particles while accelerated ex-situ mineral carbonation resulted in the formation of acicular particles of calcite. Fresh ash, weathered ash and the accelerated carbonated ash were all class F with a sum total of silica, alumina and iron oxide totaling more than 70%. A reduction in silica and alumina content with instability of fly ash. Dumping of spent iron catalyst (resulting from the petrochemical operations as Sasol) on the ash dam led to an increase in Fe203 content of the weathered ash. Enrichment of Nb, Sr, Y, Th, Na, Cl, S04, K and S with natural carbonation as well as during accelerated ex-situ mineral carbonation was observed and was due to the contact of ash with brine during these two processes. Reduction of Zr, Rb, Pb, Ni, Co and V content of ash was observed with weathering. Mineralogically, all the ash samples had main phases of mullite, quartz, magnetite and hematite, with weathered and accelerated carbonated ash having additional phases of calcite. The aluminosilicious nature of the three ashes was identified by structural evaluation using Fourier transform infrared analysis which revealed that, bands associated with C-O in-plane and out of plane bending of carbonates was only visible in weathered and carbonated ash.
|
92 |
Alteration and recovery of a stream macroinvertebrate community exposed to fly ash effluent and an analysis of the causative factorsSpecht, Winona L. January 1985 (has links)
Structural and functional changes in the macroinvertebrate community of a fly ash receiving stream were investigated during the final year of fly ash basin operation and for 10 months after fly ash discharges to the stream were terminated. Minimal changes were observed in the benthic community until the basin reached 77% of capacity, at which time the number of macroinvertebrate taxa, density of organisms, diversity, and relative abundance of Ephemeroptera all declined sharply. Ephemeroptera (mayflies) exhibited the greatest sensitivity to the fly ash effluent, while the beetle, Psephenus herricki (Coleoptera) was very resistant to the effects of fly ash. Recovery responses of the macroinvertebrate community were observed one month after fly ash discharges to the stream ended, while full recovery required 10 months.
Based on the results of the field study, the toxicity of fly ash constituents (fly ash particulates, pH excursions, and heavy metals) was examined in three species of aquatic insects: Stenonema pudicum (Ephemeroptera), Hydropsyche slossonae (Trichoptera), and Psephenus herricki. Fly ash particulates were not acutely toxic to the three species at concentrations of 4000 mg/l. Stenonema pudicum was consistently the most sensitive species to acidic and alkaline pH extremes and heavy metals (Cd, Cr, Cu, Zn, and a metal mixture), while Psephenus herricki was consistently the most resistant species tested.
Alkaline pH extremes and elevated heavy metal concentrations are believed to be responsible for the observed changes in the macroinvertebrate community of the receiving stream during the final two months of basin operation, while elevated heavy metal concentrations were responsible for earlier perturbation of the stream community. / Ph. D.
|
93 |
The use of fly ash as a pozzolanic material in Portland cement concreteShahab-Ed-Din, Ghalib M. January 1958 (has links)
Call number: LD2668 .T4 1958 S49
|
94 |
A comparison of the compressive strength and shrinkage of Portland cement-fly ash concrete with the chemical constituents of the fly ashLnenicka, William Joseph. January 1953 (has links)
Call number: LD2668 .T4 1953 L57 / Master of Science
|
95 |
Homol'Ovi I Pueblo: An Examination of Plant Remains Within Ash Closure, Renewal, and Dedication DepositsMiljour, Heather J. January 2016 (has links)
Methodical and detailed excavation of room and feature fill at Homol'ovi I pueblo has allowed for the study of structure and feature closure and dedication practices. At least six reoccurring ash closure deposit types have been identified, and several can be tied to the renewal and re-use of features, structures, and pueblo space. Other ritual closure deposits serve to cover and seal off space, and based on the various colors of sediment, ash, and objects used in the creation of elaborately layered structure and feature fill, the deposits are suggestive of conservation efforts that are connected to traditional Hopi cosmology, color symbolism, and religious ideology. Still other ash closure deposits may have been an element of ritual purification. A large number of plants have prominent roles in traditional Hopi ritual practices. This study specifically explores the plant taxa that are present within the six reoccurring ash closure deposit types, and Hopi ethnography and recent collaborative efforts are used to draw inferences between past and the present plant uses. The closure deposits are compared amongst each other, as well as against non-ritual deposits in an attempt to define patterns of plant use and ritual behavior.
|
96 |
Structure and petrochemistry of the Hafnarfjall-Skarðsheiði Central Volcano and the surrounding basalt succession, W-IcelandFranzson, Hjalti January 1978 (has links)
This research involves a study of a 2 km thick volcanic succession which accumulated during the opening stages of the precursor of the Reykjanes-Langjökull axial rift zone in W-Iceland, between 6-3 m.y. Following the initial accumulation of olivine tholeiite lavas, which lie unconformably on an older crustal basement 10-13 m.y.), a central volcano developed in the Hafnarfjall-Skarðsheiði area. It was active for some 1.5 m.y. and consists of four volcanic phases: I. The Brekkufjall phase is characterized by basaltic volcanism followed by voluminous and copious extrusions of differentiated rocks culminating in a sudden caldera collapse (c.5 km wide) in Brekkufjall. II. During the Hafnarfjall phase a thick extrusive sequence of basaltic to rhyolitic compositions accumulated, mainly fed by ENE fissures. During the gradual subsidence of the Hafnarfjall caldera (7 by 5 km) a marked decrease occurred in lava accumulation rate outside the caldera. Epicentres of three cone sheet swarms coincide in time and space with three basinal structures of this caldera. III. The Skarðsheiði phase is characterized by N-S fissuring and a marked bimodal basalt-rhyolite lava accumulation. IV. Remnants of the Heioarhorn phase include compositions ranging from basalts to rhyolites. The western boundary of the axial rift zone is marked by large intrusives, basalt flexuring, a sheet swarm and the disappearance of dyke swarms. The lenticular unit was later buried by lavas of the Hvalfjörður lenticular unit. Rocks of the central volcano follow the Þingrmúli trend, but is discontinuous in the basal tic andesite range. Basalts (frequently porphyritic) with relatively monotonous compositions and low LIL abundancies predominate during episodes of low extrusion rate whereas high elemental dispersion characterizes basalts of high extrusion rate episodes. The basalt compositions are believed to be controlled more by partial melting processes rather than by episodes of low-pressure fractionation. The differentiated rocks are considered to have predominantly formed by partial melting of the lower crust.
|
97 |
Models of tephra dispersalBonadonna, Costanza January 2001 (has links)
No description available.
|
98 |
PFA concrete : strength development and permeation propertiesByars, Ewan Alexander January 1992 (has links)
No description available.
|
99 |
An investigation of the use of two industrial waste by-products in contaminant barrier systemsAwe, Yewande Aramide January 2000 (has links)
No description available.
|
100 |
Fly ash catalysed synthesis of CNFs for use in a photocatalytic CNF-TiO2 hybridMoya, Arthur Ndumiso January 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2016. / This study has explored the CVD synthesis of carbon nanofibres (CNFs) using Eskom’s
waste coal fly ash as a catalyst with acetylene and hydrogen as the carbon source and
carrier gas, respectively. In the process, a possible growth mechanism for these carbon
nanofibres was sought. CNFs were successfully synthesised from fly ash and were found to
have an average diameter of 22±7 nm.
The growth mechanism of these CNFs was studied using EDS, TEM and laser Raman
spectroscopy. It was observed that CNFs grew via root growth on spherical particles of fly
ash and by tip growth on irregular-shaped metal oxide agglomerates. Both of these were
found, through EDS analysis, to be Fe-rich.
CNFs were functionalised between 2-12 h under reflux at 110 °C using a 3:1 (v/v)
combination of HNO3 and H2SO4 in order to introduce functional groups onto their surfaces
to act as anchors for hydrophilic reactants. The functionalisation of these CNFs was studied
using TEM, laser Raman spectroscopy, ATR-FTIR spectroscopy, PXRD, BET, XRF and TGA.
ATR-FTIR spectroscopy showed that some carbonyl functional groups were present on the
surfaces of these CNFs after functionalisation.
The functionalised CNFs (fCNFs) were then treated using a simple hydrothermal method to
deposit 10% (m/m) of TiO2 nanoparticles onto their surface. This hydrothermal method
employed the drop-wise addition of TiCl4 to a cold water-fCNFs mixture, which was then
refluxed at 115 °C for 2-12 h. Laser Raman spectroscopy confirmed the presence of both
TiO2 (phase pure anatase) and CNFs. ATR-FTIR spectroscopy provisionally revealed the
presence of covalent Ti-O-C bonds.
Studies where the duration of exposure to TiCl4 and the functionalisation time of CNFs
were examined showed that the particle size and agglomeration of the TiO2 nanoparticles
did not affect the surface area of the CNF-TiO2 hybrids significantly. However, CNF-TiO2
hybrids which were shown by TGA to have high fly ash content were observed to have low
surface areas. fCNFs functionalised at 2 h had the highest surface area, at all fixed durations
of exposure to TiCl4 by comparison with fCNFs which had been functionalised for longer
periods. / GR2016
|
Page generated in 0.0319 seconds