• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Agregados leves de cerâmica vermelha com incorporação de cinza do bagaço de cana-de-açúcar sinterizados em forno de micro-ondas / Lightweight aggregates of red ceramics with the incorporation of a sugarcane bagasse ash sintered in a microwave

Lyra, Gabriela Pitolli 20 March 2019 (has links)
O concreto com agregados leves, quando comparado ao concreto convencional, reduz consideravelmente o peso nas edificações. No entanto, esse material ainda não está amplamente difundido no Brasil, pois há apenas uma empresa produtora de agregados leves (argila expandida), localizada no estado de São Paulo, ocasionando altos custos de transporte. Uma alternativa para disseminar a tecnologia do concreto leve é a utilização do parque produtivo de cerâmica vermelha espalhado pelo território nacional, para a produção de agregados leves, utilizando a argila vermelha com a adição da cinza do bagaço da cana-de-açúcar (CBCA) para diminuir a massa específica desse material. Assim, o presente trabalho teve como objetivo avaliar o desempenho de agregados leves destinados a concretos leves produzidos com argila vermelha e a incorporação de CBCA, sinterizados em forno convencional e forno de micro-ondas, visando uma alternativa energeticamente mais eficiente de sinterização de materiais cerâmicos. As caracterizações das matérias-primas foram realizadas por análises de espectroscopia de fluorescência de raios X, perda ao fogo, difração de raios X, termogravimetria, distribuição granulométrica e massa específica real. Os corpos de prova foram conformados por extrusão em três diferentes composições, argila vermelha (referência), argila vermelha com adição de 20 % de CBCA e argila vermelha com adição de 40 % de CBCA, e sinterizados nas temperaturas de 700, 800, 900, 1000 e 1100 ºC. A sinterização convencional ocorreu por 60 min. com taxa de aquecimento de 10 ºC/min. No forno de micro-ondas a sinterização ocorreu de maneira híbrida, com taxa de aquecimento de 50 ºC/min. por 5, 10 e 15 min. Após a sinterização foram realizados os ensaios de retração linear, resistência à compressão, absorção de água, porosidade aparente, massa específica aparente, termogravimetria, difração de raios-X, microtomografia e microscopia eletrônica de varredura. Os resultados obtidos indicaram que a sinterização em forno de micro-ondas, quando comparada a sinterização em forno convencional, promove aumento dos valores de resistência à compressão e redução dos valores de absorção de água das massas cerâmicas, provavelmente devido ao refinamento da microestrutura. A adição de CBCA possibilitou a redução da massa específica dos corpos de prova, em especial das cerâmicas com 40 % de adição. Os agregados com adição de CBCA sinterizados em forno de micro-ondas apresentaram valores de resistência a compressão e massa específica aparente similares a argila expandida, se mostrando assim como uma alternativa de agregados leves com baixo impacto ambiental no processo de produção, considerando a maior eficiência energética do forno de micro-ondas e do reuso de resíduos agroindustriais. / The lightweight aggregates concrete reduces considerably the weight in buildings compared with the conventional one. However, this type of material has not been widespread yet once there is just one lightweight aggregate (expanded clay) manufacturer locate in São Paulo state, which makes the transportation still costly. Alternatively, the lightweight concrete technology could be spread all over Brazil by locating the red ceramic industrial production throughout the country for lightweight aggregate calcined clay production, using the red clay with the addition of the sugarcane bagasse ash (SCBA) to reduce the specific mass of this material. Thus, the aim of this research is to assess the performance of lightweight aggregates for lightweight concrete produced from red clay with the incorporation of ash from the sugarcane bagasse (SCBA) sintered in conventional oven and microwave, in the search of a more energy-efficient alternative for the sintering of ceramic materials. The characterization of the raw materials was carried out by analysis of X-ray fluorescence spectroscopy, loss on ignition, X-ray diffraction, thermogravimetry, particle size distribution and actual specific mass. The specimens were extruded in three different compositions, red clay (reference), red clay with addition of 20 % of SCBA and red clay with addition of 40 % SCBA, and sintered at temperatures of 700, 800, 900, 1000 and 1100 °C. Conventional sintering occurred for 60 min. with a heating rate of 10 ºC / min. In the microwave oven sintering occurred in a hybrid manner, with a heating rate of 50 ºC/min for 5, 10 and 15 min. After sintering, linear retraction, compressive strength, water absorption, apparent porosity, apparent specific mass, thermogravimetry, X-ray diffraction, microtomography and scanning electron microscopy were performed. The results showed that sintering in microwave oven, when compared to sintering in conventional kiln, promotes an increase in the values of compressive strength and reduction of the water absorption values of the ceramic masses, probably due to the refinement of the microstructure. The addition of SCBA allowed the reduction of the specific mass of the specimens, especially of the ceramics with 40% addition. The aggregates with addition of SCBA sintered in microwave oven presented values of compressive strength and apparent specific mass similar to expanded clay, thus showing as an alternative of light aggregates with low environmental impact in the production process, considering the higher efficiency energy efficiency of the microwave oven and the reuse of agro-industrial waste.
2

Quantification of the bioccumulation potential of various chemical elements from coal fly ash using Brassia juncea and Spinacia oleracea L and its implication for phytoremediation of coal fly ash dumps

Mashau, Aluwani Shiridor 18 September 2017 (has links)
MENVSC / Department of Ecology and Resource Management / South Africa is highly dependent on coal for production of electricity. The combustion of coal for electricity generation produces waste by-products which include fine ash (fly ash) and coarse ash. Fly ash (FA) is produced in large amounts while its utilization is low due to its classification as a hazardous material. Sasol produces about 7 million tons of FA, while Eskom produces about 28 million tons of coal FA annually. FA is a fine by-product from pulverized coal with detrimental effects on plants, soil or land, animals and human beings, and pollutes the air. The present investigation focuses on the examination of the chemical elements bioaccumulation and phytoremediation potential of Indian mustard (Brassica juncea) and Spinach (Spinacia Oleracea L). X-ray fluorescence (XRF) was used to analyze the elemental composition of FA and soil, Scanning Electron Microscope (SEM) to examine the morphology, while X-ray diffraction (XRD) analysis was used to evaluate the mineralogy of FA. The concentrations of metal and non-metal species that are released from FA on contact with water at different conditions were quantified using ICP-MS. Pot culture experiment was conducted to grow Brassica juncea and Spinacia Oleracea L. using FA and soil as growth medium. Leachates from the pots were collected and analysed using ICP-MS. Plant parts from harvested Brassica juncea and Spinacia Oleracea L. were cut separately and analysed using ICP-MS for the concentrations of different metal and non-metal species in plant parts. Plant parts were also used to estimate biomass and chlorophyll content (leaves). To prepare these plant samples for analysis, the powdered plant sample (0.5 g) was digested through aqua regia (HCL:HNO3 = 3:1 (v/v)) to near dryness using hotplate and filled to 100 mL of MilliQ water. The samples were filtered and directly used to determine the chemical elements concentrations. Blanks and internal standards were used for quality assurance during analysis. Chemical elements that are present in FA and sometimes in higher concentrations are associated with detrimental effects in plants, animals and human beings, hence phytoremediation is vital. Bioconcentration factor (BCF) was used to estimate the metal species accumulation ability of the plants from the FA, FA/soil mixtures, while translocation factor (TF) was used to assess the plant species potential for phytoremediation of coal fly ash dumps. Analysis of Varience (ANOVA) was used to statistically test data using Graphpad software package. Relationship between chemical elements in soil, FA and FA+soil growth media and also different plant parts (root, stem and leaf) of B. juncea and S. Oleracea L were calculated using the t - test, ANOVA-Bartlett test, Mann-Whitney Test and Kruskal-Wallis Statistic (KW) depending on each data set. The physicochemical characterization of coal fly ash showed that FA from Grootvlei power station can be classified as class F with an alkaline pH level of 10.62. It showed that particle morphology of this FA had a lower degree of sphericity with irregular agglomerations of many particles while there were dominant spherical particles and smaller sharp needle like particles. It is also an alumino-silicate material as confirmed by the high SiO2 and Al2O3 content, while soil leachates had an average/neutral pH of 7.22 with very high amounts of Si. In both soil and FA, elements that were expected to be readily available to plants included Ca, Si, K, Ba, Mo, Na, Al, Mg, Sr and non-essential elements (Si, Ba, Na, Al, Sr), which, if uptaken by plants’ roots can have negative impacts in plants. Physicochemical analysis of soil, FA and FA+soil leachates showed that the alkalinity of the FA changed over time and there was also a decrease in the EC due to dissolution iv of soluble major oxides, which was promoted by continuous water irrigation. The soil and FA+soil growth media showed similar results. Chemical elements like B, Mn, Fe and Ba were occurring at higher concentrations in leachates for most weeks in the pot culture experiments. However, it was observed that in the eleventh week of leachate collection all these chemical elements decreased to very low concentrations. This suggest that these chemical elements can be reduced over time as plants are being irrigated which is either due to uptake by plants or washed off with water. Statistically, there was a significant difference for different chemical elements of leachates from different growth media for each plant species (B. juncea and S. Olearcea L.). The overall growth rate shows that S. Oleracea L was better than that of B. juncea especially in the FA media over time, while the biomass of the two plant species showed similar results. After all, even though S. Oleracea L had carotenoid content below detection limits, it had higher chlorophyll b than B. juncea for all growth media in general. But, statistically there was no significant difference between the two plant species in terms of growth rate and biomass; even between the plant parts denoting similar growth performance for the two plant species under study. The bioaccumulation potential of the two plant species showed that chemical elements such as Fe, Mn, Ba, Zn and B were highly accumulated by the different parts of the plants. However, the chemical elements such as of Mo, Ni, Cu, and Cr showed the least concentrations. This trend was similar for all growth media and both plant species but this changes over time for different growth media and plant species as increasing and decreasing trends can be noticed. This led to no significant difference between plant species and also growth media, statistically. High BCF values of Fe, Mn, Ba, Zn and B were observed in the different parts of the plants for both plant species. However, Mo, Ni, Cu, and Cr had BCF values less than 1 for most growth media over time. BCF values in plant parts differed with time, growth media and plant species. Translocation of chemical elements shows that the B. juncea plant proved to be an effective phytoremediation plant species since it is effective in translocation of many chemical elements for different growth media to shoots while S. Oleracea L failed to translocate most chemical elements from stem to leaves although it translocated some from root to shoots. Hence, it can be concluded from the study that both species can be used in phytoremediation of coal fly ash dumps but with B. juncea being the most effective accumulator and translocator of many chemical elements. However, it can be recommended that chelating agents like ethylene diamine tetra acetic acid (EDTA) be introduced to solubilize chemical elements from growth media matrix into growth media solution to facilitate the quick transport of chemical elements into xylem, and increase

Page generated in 0.064 seconds