1 |
Answering Object Queries over Knowledge Bases with Expressive Underlying Description LogicsWu, Jiewen January 2013 (has links)
Many information sources can be viewed as collections of objects and descriptions about objects. The relationship between objects is often characterized by a set of constraints that semantically encode background knowledge of some domain. The most straightforward and fundamental way to access information in these repositories is to search for objects that satisfy certain selection criteria. This work considers a description logics (DL) based representation of such information sources and object queries, which allows for automated reasoning over the constraints accompanying objects. Formally, a knowledge base K=(T, A) captures constraints in the terminology (a TBox) T, and objects with their descriptions in the assertions (an ABox) A, using some DL dialect L. In such a setting, object descriptions are L-concepts and object identifiers correspond to individual names occurring in K. Correspondingly, object queries are the well known problem of instance retrieval in the underlying DL knowledge base K, which returns the identifiers of qualifying objects.
This work generalizes instance retrieval over knowledge bases to provide users with answers in which both identifiers and descriptions of qualifying objects are given. The proposed query paradigm, called assertion retrieval, is favoured over instance retrieval since it provides more informative answers to users. A more compelling reason is related to performance: assertion retrieval enables a transfer of basic relational database techniques, such as caching and query rewriting, in the context of an assertion retrieval algebra.
The main contributions of this work are two-fold: one concerns optimizing the fundamental reasoning task that underlies assertion retrieval, namely, instance checking, and the other establishes a query compilation framework based on the assertion retrieval algebra. The former is necessary because an assertion retrieval query can entail a large volume of instance checking requests in the form of K|= a:C, where "a" is an individual name and "C" is a L-concept. This work thus proposes a novel absorption technique, ABox absorption, to improve instance checking. ABox absorption handles knowledge bases that have an expressive underlying dialect L, for instance, that requires disjunctive knowledge. It works particularly well when knowledge bases contain a large number of concrete domain concepts for object descriptions.
This work further presents a query compilation framework based on the assertion retrieval algebra to make assertion retrieval more practical. In the framework, a suite of rewriting rules is provided to generate a variety of query plans, with a focus on plans that avoid reasoning w.r.t. the background knowledge bases when sufficient cached results of earlier requests exist. ABox absorption and the query compilation framework have been implemented in a prototypical system, dubbed CARE Assertion Retrieval Engine (CARE). CARE also defines a simple yet effective cost model to search for the best plan generated by query rewriting. Empirical studies of CARE have shown that the proposed techniques in this work make assertion retrieval a practical application over a variety of domains.
|
2 |
Answering Object Queries over Knowledge Bases with Expressive Underlying Description LogicsWu, Jiewen January 2013 (has links)
Many information sources can be viewed as collections of objects and descriptions about objects. The relationship between objects is often characterized by a set of constraints that semantically encode background knowledge of some domain. The most straightforward and fundamental way to access information in these repositories is to search for objects that satisfy certain selection criteria. This work considers a description logics (DL) based representation of such information sources and object queries, which allows for automated reasoning over the constraints accompanying objects. Formally, a knowledge base K=(T, A) captures constraints in the terminology (a TBox) T, and objects with their descriptions in the assertions (an ABox) A, using some DL dialect L. In such a setting, object descriptions are L-concepts and object identifiers correspond to individual names occurring in K. Correspondingly, object queries are the well known problem of instance retrieval in the underlying DL knowledge base K, which returns the identifiers of qualifying objects.
This work generalizes instance retrieval over knowledge bases to provide users with answers in which both identifiers and descriptions of qualifying objects are given. The proposed query paradigm, called assertion retrieval, is favoured over instance retrieval since it provides more informative answers to users. A more compelling reason is related to performance: assertion retrieval enables a transfer of basic relational database techniques, such as caching and query rewriting, in the context of an assertion retrieval algebra.
The main contributions of this work are two-fold: one concerns optimizing the fundamental reasoning task that underlies assertion retrieval, namely, instance checking, and the other establishes a query compilation framework based on the assertion retrieval algebra. The former is necessary because an assertion retrieval query can entail a large volume of instance checking requests in the form of K|= a:C, where "a" is an individual name and "C" is a L-concept. This work thus proposes a novel absorption technique, ABox absorption, to improve instance checking. ABox absorption handles knowledge bases that have an expressive underlying dialect L, for instance, that requires disjunctive knowledge. It works particularly well when knowledge bases contain a large number of concrete domain concepts for object descriptions.
This work further presents a query compilation framework based on the assertion retrieval algebra to make assertion retrieval more practical. In the framework, a suite of rewriting rules is provided to generate a variety of query plans, with a focus on plans that avoid reasoning w.r.t. the background knowledge bases when sufficient cached results of earlier requests exist. ABox absorption and the query compilation framework have been implemented in a prototypical system, dubbed CARE Assertion Retrieval Engine (CARE). CARE also defines a simple yet effective cost model to search for the best plan generated by query rewriting. Empirical studies of CARE have shown that the proposed techniques in this work make assertion retrieval a practical application over a variety of domains.
|
Page generated in 0.1419 seconds