• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Cubesat-Compatible Plasma Ion Analyzer for Asteroid Composition Analysis

Zankov, Ivan January 2019 (has links)
Many space probes have conducted in situ explorations of asteroids, in recent decades, intent on identifying evidence of the solar system's earliest processes of formation within the asteroids' interiors. Several future asteroid missions are planned, among which include ESA's Hera mission to explore the Didymos binary asteroid pair. An ion mass analyzer is currently being designed at the Swedish Institute of Space Physics for use as part of the Hera mission. This thesis aims to optimize the instrument such that each of its parameters meets the requirement for performance. A computer simulation is used to calculate the trajectories of low-energy ions inside the instrument, where the electrostatic potential are imposed by grids and electrodes embedded inside the instrument. From the data analysis of the simulation results, the performance for each parameter can be derived. By changing the settings of the grids and electrodes (e.g., positions and voltages), the instrument parameters are to be optimized. Two tasks are set up in this project--- the first task is to optimize the focusing system of the incoming ions at the instrument's entrance, and the second task is to investigate the reflectron system so that the mass resolution of the instrument can be optimized via reducing the spread of the ions' time of flight spectra. The focusing system is found to already be optimized, but instead, a relation between its position of the grid at the instrument's entrance and the instrument's performance is derived. The method of and parameters for optimization within the reflectron are extensively tested individually during this project. Although several performances in each trial from the reflectron analysis cannot meet at least one of the requirements, enough scenarios are examined such that every parameter tested ends with a value suitable to be applied individually to optimize the ion mass analyzer. The findings from the individual tests done in this project can be applied to further optimization, particularly to optimize multiple parameters simultaneously in the near future.
2

Spectral Study of Asteroids and Laboratory Simulation of Asteroid Organics

Hargrove, Kelsey 01 January 2015 (has links)
We investigate the spectra of asteroids at near- and mid-infrared wavelengths. In 2010 and 2011 we reported the detection of 3 ?m and 3.2-3.6 ?m signatures on (24) Themis and (65) Cybele indicative of water-ice and complex organics [1] [2] [3]. We further probed other primitive asteroids in the Cybele dynamical group and Themis family, finding diversity in the shape of their 3 ?m [4] [5] [6] and 10 ?m spectral features [4]. These differences indicated mineralogical and compositional variations within these asteroid populations. Also in the mid-infrared region we studied a larger population of asteroids belonging to the Bus C, D, and S taxanomic classes to understand the relationship between any mineralogy and hydration inferred in the visible and near- infrared with the shape, strength, and slope of the 10 ?m emission. We have discovered that at least 3 of the main Bus taxanomic groups (Cs, Ds, and Ss as defined by their visible spectra) clearly cluster into 3 statistically distinct groups based on their 8-13 ?m spectra. Additionally we have attempted to simulate in a laboratory the possible organic compounds we have detected on two asteroids, using various mixtures containing aromatic and aliphatic hydrocarbons. We find that asteroid (24) Themis and (65) Cybele have ?CH2/?CH3 and NCH2/NCH3 ratios similar to our 3- methylpentane, propane, and hexane residues, suggesting that the organics on these asteroids may be short chained and/or highly branched. The ?CH2/?CH3 and NCH2/NCH3 for asteroid(24)Themis are most consistent with the DISM, and some carbonaceous chondrites. The band centers of the C-H stretch absorptions indicate that both asteroids may have aliphatic carriers chemically bonded to electronegative groups (i.e. aromatics), and some that are not. We also detect a 3.45 ?m feature in the spectra of both asteroids that is present in several dense molecular clouds. Our results suggest an interstellar origin for the organics on (24) Themis, and likely (65) Cybele. The differences in the organics of Themis and Cybele are likely related to variations in thermal processing, irradiation and/or formation region in the solar nebula.

Page generated in 0.1348 seconds