• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de la composition chimique des naines M du voisinage solaire grâce à la spectroscopie infrarouge à haute résolution

Jahandar, Farbod 12 1900 (has links)
La spectroscopie est un aspect fondamental de l'astronomie observationnelle, offrant des contraintes sur la composition, la température, la densité, la masse et le mouvement des objets astronomiques. Cette thèse se concentre spécifiquement sur la spectroscopie des naines M, des étoiles petites et froides de la séquence principale, les plus nombreuses dans notre Galaxie. Malgré leur abondance, les naines M ont été moins étudiées que les étoiles plus brillantes en raison de leur faible luminosité et de leurs spectres complexes dominés par des bandes moléculaires. Cependant, leur importance en astrophysique est profonde, car elles sont cruciales pour comprendre les populations stellaires, l'évolution des galaxies et elles sont des cibles privilégiées dans la recherche et la caractérisation des exoplanètes, en particulier celles semblables à la Terre et potentiellement habitable. La pierre angulaire de notre méthodologie observationnelle est le SpectroPolarimètre InfraRouge (SPIRou), un instrument de pointe situé au Télescope Canada-France-Hawaï (CFHT). Ce spectropolarimètre proche infrarouge (PIR) est spécialisé pour des études lies à la détection et caractérisation d'exoplanètes et divers programmes d'astrophysique stellaire. La spectroscopie à haute résolution de SPIRou opère entre 0.98 et 2.35 microns, avec un pouvoir de résolution d'environ 70000, idéal pour étudier les étoiles relativement froides comme les naines M, qui émettent principalement dans le domaine spectral du proche infrarouge. Sa capacité à détecter des caractéristiques spectrales subtiles est cruciale pour déterminer avec précision les abondances élémentaires, la température effective et la vitesse radiale d'une étoile. De plus, bien que ce ne soit pas l'objectif principal de cette thèse, les capacités polarimétriques de SPIRou offrent des aperçus précieux sur les champs magnétiques des naines M. Notre analyse initiale s'est concentrée sur l'étoile de Barnard, une naine M bien étudiée dans le voisinage solaire. Nous avons comparé les spectres PIR haute résolution observés aux modèles d'atmosphère stellaire PHOENIX-ACES. Bien que ces modèles soient généralement en bon accord avec les observations, de nombreuses différences spectrales sont identifiées telles que le décalage du continuum, de la contamination non résolue de diverses raies de même que le décalage inattendu de raies spectrales de leur longueur d'onde nominale. Tous ces problèmes conspirent à biaiser les déterminations d'abondance et de température effective. Une partie importante de cette étude a impliqué l'identification d'une liste de raies spectrales fiables dans le spectre PIR pour l'analyse chimique. Nous avons développé un pipeline automatisé personnalisé qui prend en compte les incertitudes du modèle, adapté pour déterminer à la fois la température effective et les abondances chimiques basées sur un spectre PIR haute résolution. Pour l'étoile de Barnard, nous avons déterminé une température effective de 3231 +/- 21 K, en excellent accord avec la valeur de 3238 +/- 11 K déduite des méthodes interférométriques considérées comme les plus fiables. De plus, notre analyse a fourni des mesures d'abondance de 15 éléments, dont quatre (K, O, Y, Th) jamais signalés auparavant. Ces mesures sont en bon accord avec la littérature. S'appuyant sur notre étude initiale, nous avons étendu notre méthodologie à un échantillon de 31 naines M proches, dont une dizaine dans des systèmes binaires avec une étoile FGK comme primaire dont la métallicité est bien établie par la spectroscopie haute resolution dans le domaine visible. Cet échantillon permet d'investiguer l'applicabilité et les limites de nos techniques et de fournir une comparaison entre les mesures d'abondance déduites de la spectroscopie PIR et optique. Nous avons caractérisé les incertitudes de notre méthode Teff en la testant sur des modèles synthétiques avec divers niveaux de bruit et avons trouvé une incertitude constante de 10 K pour un rapport signal-bruit supérieur à ~100. La comparaison de nos mesures de température effective sont en excellent accord, à 30 K près, avec des valeurs interférométriques. Nous avons ensuite mesuré les abondances de jusqu'à 10 éléments différents pour ces étoiles, certaines ayant leurs premières compositions chimiques mesurées. Pour les systèmes binaires, nous avons trouvé des métallicités marginalement inférieures dans les naines M par rapport à leurs compagnons FGK dont la métallicité est dérive de la spectroscopie optique, avec des différences moyennes de 0,14 +/- 0,09 dex par rapport aux valeurs rapportées de Mann et al. (2013). On trouve donc un excellent accord entre les mesures d'abondances dérivées de la spectroscopie PIR haute résolution par notre méthode et celles dérivées de la spectroscopie haute résolution optique de leur compagnon FGK. Nos résultats ont contribué à l'analyse spectroscopique des naines M, élargissant le champ de l'analyse d'abondance chimique pour ces étoiles. Nous avons compilé une liste de raies fiables où les modèles PHOENIX montrent un bon accord avec les observations. Nos résultats soulignent la nécessité de modèles d'atmosphère améliorés pour mieux exploiter la puissance de la spectroscopie PIR pour une détermination précise de la température effective et des mesures d'abondance des naines M. / Spectroscopy is a foundational aspect of observational astronomy, providing critical insights into the composition, temperature, density, mass, and motion of astronomical objects. This thesis specifically focuses on the spectroscopy of M dwarfs, small and cool stars on the main sequence, which are the most numerous type of stars in our Galaxy. Despite their abundance, M dwarfs have been less studied than brighter stars due to their low luminosity and complex spectra dominated by molecular bands. However, their significance in astrophysics is profound, as they are crucial in understanding stellar populations, galaxy evolution, and are prime targets in the search and characterization of exoplanets, especially Earth-like ones potentially harboring life. The cornerstone of our observational methodology is the SpectroPolarimètre InfraRouge (SPIRou), a cutting-edge instrument housed at the Canada-France-Hawaii Telescope (CFHT). This near-infrared (NIR) spectropolarimeter excels in a range of scientific studies, from exoplanet detection to stellar physics. SPIRou’s high-resolution spectroscopy operates between 0.98 and 2.35 microns, with a resolving power of about 70000, ideal for analyzing cool stars like M dwarfs, which emit predominantly in the NIR spectrum. Its ability to detect subtle spectral features is crucial for accurately determining elemental abundances, effective temperature, and radial velocity of a star. For our research, the high-resolution NIR spectroscopy of SPIRou was essential, allowing us to capture detailed spectra of M dwarfs with high precision, thus forming the foundation of our analysis. Our initial analysis centered on Barnard's star, a well-studied M dwarf in the solar neighborhood. We compared the observed high-resolution NIR spectra to the PHOENIX-ACES stellar atmosphere models. While those models are generally in good agreement with observations, numerous spectral differences are identified such as continuum mismatch, unresolved contamination, and spectral line shifts, all conspiring to bias elemental abundance and effective temperature determinations. A crucial part of this study involved identifying reliable spectral lines in the NIR spectrum for chemical analysis. We developed a customized automated pipeline that takes model uncertainties into account to determine both the effective temperature and chemical abundances based on a high-resolution NIR spectrum. For Barnard's star, we determined an effective temperature of 3231 +/- 21 K, in excellent agreement with the value of 3238 +/- 11 K inferred from interferometric methods. Additionally, our analysis has provided abundance measurements of 15 elements including four (K, O, Y, Th) never reported before. Those measurements are in good agreement with the literature. Building upon our initial study, we extended our methodology to a sample of 31 nearby M dwarfs, including some in binary systems with a FGK star as primary. This sample allows to investigate the broader applicability and potential limitations of our techniques and provide a comparison between abundance measurements inferred from NIR and optical spectroscopy. We investigated the uncertainties of our Teff method by testing it on synthetic models with various level of noise and found a consistent uncertainty of 10 K for signal-to-noise ratio greater than ~100. Our Teff are in excellent agreement with those inferred from interferometric methods within typical dispersion of ~30 K, comparable to the apparent noise floor of our Teff estimates, showing the validity of our method. We then measured the abundances for up to 10 different elements for these stars, many of them being their first measured chemical compositions. For the binary systems, we find an excellent agreement between our metallicities of M dwarfs compared to their FGK counterparts derived from optical spectroscopy, with with mean differences of 0.14 +/- 0.09 dex against the reported values from Mann et al. (2013). Our findings have contributed to the spectroscopic analysis of M dwarfs, broadening the scope of chemical abundance analysis for these stars. We compiled a reliable line list where PHOENIX models show good agreement with observations. Our results emphasize the need for improved atmosphere models to fully exploit the power of NIR spectroscopy for precise determination of effective temperature and abundance measurements of M dwarfs.
2

Insights into the diversity of exoplanet atmospheres in the Era of JWST

Radica, Michael 07 1900 (has links)
De la religion à la science, la quête de compréhension de notre place dans l’univers est l’un des moteurs fondamentaux du progrès humain. Depuis la découverte de la première exoplanète autour d’une étoile de la séquence principale au milieu des années 1990, le nombre de systèmes exoplanétaires a explosé pour atteindre plusieurs milliers. Nous avons même réalisé des études approfondies des atmosphères de nombreux mondes lointains, ce qui nous a permis de découvrir la diversité, jusqu’alors insondable, des planètes qui existent dans la galaxie. Pour comprendre la place de notre propre système solaire dans le contexte de la population plus large des exoplanètes, il est d’abord essentiel de comprendre la diversité des exoplanètes elles- mêmes. La spectroscopie spatiale à basse résolution a toujours été l’outil de choix pour sonder les atmosphères des exoplanètes et comprendre la physique et la chimie qui régissent leur formation et leur évolution. Au cours des deux ans et demi qui ont suivi son lancement, j’ai contribué aux études des atmosphères d’exoplanètes avec JWST couvrant tout l’espace des paramètres de la population des exoplanètes. Cette thèse contient quatre de ces études, y compris certaines des toutes premières observations d’exoplanètes avec le «Near Infrared Imager and Slitless Spectrograph» (NIRISS) du JWST. Dans le premier travail, j’ai conçu et testé une méthode pour estimer la «fonction d’étalement de point» (PSF) bidimensionnelle d’une observation avec le mode SOSS (Single Object Slitless Spectroscopy) du NIRISS, qui est l’un des principaux modes d’observation des exoplanètes du JWST. Ces PSFs sont une donée critique pour une méthode d’extraction spectrale spécialisée conçue pour traiter les défis techniques spécifiques posés par les observations SOSS. Nous démontrons ensuite que ces PSF empiriques permettent d’obtenir des spectres d’atmosphère plus fidèles que les modèles par défaut. Dans le second projet, nous présentons l’une des toutes premières observations d’exoplanètes avec JWST NIRISS/SOSS. Ces observations du transit de l’exoplanète WASP-96 b, qui est une Saturne-chaude, montrent des signatures claires de l’absorption de H2O et de K à des abondances à peu près solaires. De plus, nous détectons une pente vers les longueurs d’onde les plus bleues de notre spectre, qui pourrait s’expliquer soit par la diffusion Rayleigh de petites particules d’aérosols, soit par les ailes élargies par la pression de l’élément Na. La possibilité de la diffusion d’aérosols est particulièrement intrigante car les observations précédentes avec Hubble, entre autres, ont conclu v que la haute atmosphère de WASP-96 b n’avait pas d’aérosols, malgré les travaux théoriques indiquant qu’elle devrait être uniformément nuageuse. Le troisième travail présente un spectre de transmission JWST NIRISS/SOSS de l’unique planète ultra-chaude LTT 9779 b; la seule planète connue dans le désert de Neptunes chaudes à avoir conservé une atmosphère primordiale. Notre spectre présente des caractéristiques atténuées qui, combinées à la structure intérieure et aux modèles de synthèse de population, nous permettent de conclure que la planète possède une atmosphère au terminateur qui est nuageuse et de haute métallicité. Un scénario de haute métallicité est cohérent avec les tendances générales dans la population des exoplanètes, ainsi que dans le système solaire. De plus, s’ils sont advectés sur le côté jour, les nuages du terminateur que nous trouvons fournissent une explication naturelle à l’albédo élevé précédemment déduit pour cette planète. Nous supposons que ces nuages peuvent faire partie d’une boucle de rétroaction positive qui sert à diminuer l’efficacité de la perte d’atmosphère sous le rayonnement intense de son étoile hôte, et à aider la survie de LTT 9779 b dans le désert de Neptunes chaudes. Enfin, nous revenons à LTT 9779 b avec l’étude d’un spectre d’éclipse qui s’étend de l’ultraviolet à l’infrarouge. En combinant les éclipses de NIRISS/SOSS avec des données d’archives ainsi que des observations inédites utilisant les capacités ultraviolettes de Hubble, nous concluons que l’albédo élevé de LTT 9779 b est probablement dû à la réflexion des nuages de MgSiO3 et confirmons que sa structure de température du côté jour n’est pas inversée. Nous entreprenons ensuite une analyse comparative de LTT 9779 b dans le contexte plus large des Jupiters ultra-chaudes, qui ont des températures comparables à LTT 9779 b mais des côtés jours systématiquement dépourvus de nuages et des structures de température inversées. De cette manière nous faisons les premiers pas pour réconcilier cette planète inhabituelle avec la population plus large des mondes ultra-chauds. Ces travaux, ainsi que les ∼20 autres auxquels j’ai contribué au cours de mon doctorat, dé- montrent les capacités inégalées du JWST pour la caractérisation des atmosphères des exoplanètes. Chaque nouvelle observation nous rapproche un peu plus de la découverte des origines de la di- versité de la population des exoplanètes, ainsi que des différences et similitudes fondamentales entre les différentes «classes» de planètes. Cette thèse met en lumière les contributions que j’ai apportées à cette entreprise au cours de mon doctorat. Le JWST a sans aucun doute fait passer de nombreuses régions de la population des exoplanètes du statut de frontières ambitieuses à celui de véritables cibles d’observation et, par conséquent, la prochaine décennie sera certainement l’une des plus transformatrices de l’histoire de la science exoplanétaire. / From religion to science, the quest to understand our place in the universe is one of the fundamental drivers of human progress. Since the discovery of the first exoplanet around a main sequence star in the mid-1990s, our current count of exoplanetary systems has exploded to several thousands. We have even performed in-depth studies of the atmospheres of many distant worlds, yielding insights into the previously unfathomable diversity of planets that exist in the galaxy. In order to understand our own solar system’s place in the context of the wider population of exoplanets, it is first essential to understand the diversity of exoplanets themselves. Low-resolution spectroscopy from space has historically been the tool of choice to probe exoplanet atmospheres and gain insights into the physics and chemistry that govern their formation and evolution. In the nearly two and a half years since its launch, I have contributed to JWST atmosphere studies spanning the full parameter space of the exoplanet population. This thesis contains four of these studies, including some of the very first exoplanet observations with JWST’s Near Infrared Imager and Slitless Spectrograph (NIRISS). In the first work, I designed and tested a method to estimate the two-dimensional point spread function (PSF) of an observation with NIRISS’s Single Object Slitless Spectroscopy (SOSS) mode, which is one of the key observing modes for JWST exoplanet observations. These PSFs are a critical input to a specialized spectral extraction method designed to deal with specific technical challenges posed by SOSS observations. We then demonstrate that these empirical PSFs result in higher-fidelity atmosphere spectra than default models. The second project presents one of the first-ever exoplanet observations with JWST NIRISS/SOSS. These transit observations of the hot-Saturn exoplanet WASP-96 b show clear signatures due to absorption of H2O and K at roughly solar abundances. Moreover, we detect a slope towards the bluest wavelengths of our spectrum, which could either be explained by Rayleigh scattering from small aerosol particles or the pressure-broadened wings of a Na feature. The aerosol scattering possibility is particularly intriguing as previous observations with Hubble and ground-based facilities have concluded WASP-96 b’s upper atmosphere to be aerosol free, despite theoretical work indicating that it should be uniformly cloudy. The third work presents a JWST NIRISS/SOSS transmission spectrum of the unique ultra-hot- Neptune LTT 9779 b; the only known planet within the hot-Neptune desert to have retained a primordial atmosphere. Our spectrum displays muted features which, when combined with interior vii structure and population synthesis models, allows us to conclude that the planet has a cloudy and high-metallicity terminator atmosphere. A high-metallicity scenario is consistent with broader trends in the exoplanet population, as well as in the solar system. Moreover, if advected onto the dayside, the terminator clouds that we find provide a natural explanation for the high albedo previously inferred for this planet. We posit that these clouds may be part of a positive feedback loop which serves to decrease the efficiency of atmosphere loss under the intense radiation of its host star, and aid LTT 9779 b’s survival in the hot-Neptune desert. Finally, we return to LTT 9779 b with the study of an ultraviolet-to-infrared eclipse spectrum. Combining eclipses from NIRISS/SOSS with archival data as well as previously unpublished observations leveraging Hubble’s ultraviolet capabilities, we conclude that the high albedo of LTT 9779 b is likely caused by reflection from MgSiO3 clouds and confirm that its dayside temperature structure is non-inverted. We then undertake a comparative analysis of LTT 9779 b within the broader context of ultra-hot-Jupiters; which have comparable temperatures to LTT 9779 b but systematically cloud-free daysides and inverted temperature structures — thereby taking the first steps to reconcile this unusual planet with the broader population of ultra-hot worlds. These works, as well as the ∼20 others to which I have contributed over the course of my PhD, demonstrate the unparalleled capabilities of JWST for the characterization of exoplanet atmospheres. Every new observation brings us one step closer to uncovering the origins of the diversity of the exoplanet population, as well as the fundamental differences and similarities between different “classes” of planets. This thesis highlights the contributions I have made to this endeavour during my PhD. JWST has undoubtedly moved many regions of the exoplanet population from aspirational frontiers to genuine observational targets, and as a result, the next decade will surely be one of the most transformative in the history of exoplanetary science.
3

TESS exoplanet candidate follow-up with ground- and space-based instruments

Mann, Christopher 08 1900 (has links)
La découverte d’exoplanètes a connu une croissance quasi exponentielle au cours des trois dernières décennies. Nous savons désormais que les systèmes d’exoplanètes sont la norme dans la galaxie et qu’il existe une variété d’archétypes de planètes qui ne correspondent pas à notre propre système solaire. Ces progrès rapides sont dus en grande partie aux missions spatiales qui utilisent la méthode des transits pour trouver et caractériser de nouvelles exoplanètes. Kepler et, plus récemment, le Transiting Exoplanet Survey Satellite (TESS) ont contribué à la majorité des exoplanètes confirmées ou candidates connues à ce jour. Les exoplanètes découvertes par TESS sont particulièrement prometteuses, car TESS a délibérément ciblé des étoiles hôtes brillantes pour faciliter l’analyse spectroscopique détaillée de l’atmosphère de leurs planètes. Bien que TESS soit très efficace pour identifier de nouveaux signaux de transit, un effort de suivi substantiel est nécessaire pour valider chaque nouvelle candidate et le succès global de la mission TESS dépend fortement de l’obtention de ce suivi de la part d’observatoires externes. Une attention particulière est souvent requise pour les planètes à longue période qui souffrent fortement des biais impliqués dans les recherches de transit. Si l’on peut surmonter les défis observationnels supplémentaires, ces planètes constituent des bancs d’essai rares et précieux pour étudier la physique et la chimie des atmosphères plus froides. Dans cette thèse, j’ai collaboré avec la communauté de suivi des exoplanètes TESS sur plusieurs fronts en apportant des instruments précédemment inutilisés, en contribuant à l’effort général de vérification des candidates, ainsi qu’en menant des études de validation et de confirmation de cibles difficiles à longue période. Nous avons adapté le réseau de téléobjectifs Dragonfly (alias "Dragonfly"), conçu pour les cibles de faible luminosité de surface, à l’observation des transits d’exoplanètes. J’ai développé un nouveau mode d’observation adapté aux transits et créé des pipelines de planification, de traitement des données et d’analyse. Nous avons atteint une précision photométrique d’environ 0,5 ppt dans des intervalles de 4 à 5 minutes sur la plage 9 < mV < 13, compétitive avec d’autres observatoires au sol de classe 1–2 m. Nous avons également développé un vaste programme d’observation avec le satellite de surveillance des objets proches de la Terre (NEOSSat) couvrant 3 ans et 6 cycles d’observation pour observer les transits d’exoplanètes de longue durée, qui représentent un défi majeur à capturer avec des observatoires au sol. En utilisant ces deux instruments, nous avons fourni des observations pour le programme d’observation de suivi des exoplanètes TESS (ExoFOP). Grâce à mon travail dans ExoFOP, j’ai dirigé une publication de validation pour TOI-1221 b, une planète sub-neptunienne de 2,9 rayons terrestres sur une orbite de 92 jours. Non seulement nous avons écarté les scénarios de faux positifs pour cette planète tempérée à longue période, mais grâce à notre analyse détaillée de 6 transits TESS et 2 détections au sol, nous avons trouvé des preuves de variations de synchronisation de transit qui pourraient indiquer une autre planète cachée dans le système. Nous avons également utilisé NEOSSat pour rechercher un deuxième transit de TOI-2010 b, qui n’en montrait qu’un seul dans les données TESS. En surveillant l’étoile hôte sur une fenêtre d’incertitude de 7 jours, nous avons capturé le transit et amélioré considérablement notre connaissance de l’éphéméride de la planète. J’ai dirigé l’article de confirmation sur cette planète semblable à Jupiter avec une orbite de 142 jours, ajoutant une cible de faible insolation à la petite collection d’exoplanètes connues avec des périodes supérieures à 100 jours et des étoiles hôtes suffisamment brillantes pour un suivi spectroscopique. En plus de diriger ces deux projets spécifiques, mes observations avec Dragonfly et NEOSSat ont jusqu’à présent contribué à 10 autres publications dont je suis co-auteur. / Exoplanet discovery has undergone near-exponential growth over the last three decades. We now know exoplanet systems are the norm in the Galaxy and that a variety of planet archetypes exist that do not necessarily match our own Solar System. This rapid advancement is due in large part to space-based discovery missions utilizing the transit method to find and characterize new exoplanets. Kepler, and more recently, the Transiting Exoplanet Survey Satellite (TESS) have contributed the majority of confirmed or candidate exoplanets known today. The exoplanets discovered by TESS show particular promise, as TESS has deliberately targeted bright host stars to facilitate detailed spectroscopic analysis of their planets’ atmospheres. While TESS is highly efficient at identifying new transit signals, substantial follow-up effort is required to validate each new candidate and the overall success of the TESS mission heavily depends on attaining this follow-up from external observatories. Special attention is often required for long-period planets that suffer heavily from the biases involved in transit searches. If one can overcome the added observational challenges, these planets provide rare and valuable testbeds to investigate cool-atmosphere physics and chemistry. Through this thesis, I engaged with the TESS exoplanet follow-up community on several fronts by bringing previously unused instrument options to the endeavour, contributing to the general effort of candidate verification, as well as leading validation and confirmation studies of challenging long-period targets. We adapted the Dragonfly Telephoto Array (a.k.a. “Dragonfly”), designed for low-surface brightness targets, to the observation of exoplanet transits. I developed a new transient-appropriate observing mode and created scheduling, data processing, and analysis pipelines. We achieve a photometric precision floor of 0.5 ppt in 4–5-minute bins over the range 9 < mV < 13, competitive other 1–2 m class ground-based observatories. We also developed an extensive observing program with the Near-Earth Object Surveillance Satellite (NEOSSat) spanning 3 years and 6 observing cycles to observe long-duration exoplanet transits that provide a major challenge to capture with ground-based observatories. Using these two instruments, we provided follow-up observations for the TESS Exoplanet Follow-up Observing Program (ExoFOP). Through my work with ExoFOP, I led a validation publication for TOI-1221 b, a 2.9 Earth-radii sub-Neptune planet on a 92-day orbit. Not only do we rule out the false-positive scenarios for this long-period temperate planet, but through our detailed analysis of 6 TESS transits and 2 ground-based detections, we find evidence of transit timing variations that may indicate an additional hidden planet in the system. We also used NEOSSat to hunt for an elusive second transit of TOI-2010 b. By monitoring the host star over a 7-day uncertainty window, we caught the transit and vastly improved our knowledge of the planet’s ephemeris. I led the confirmation paper on this temperate Jupiter-like planet with a 142-day orbit, adding a low-insolation target to the small collection of known exoplanets with periods above 100 days and host stars bright enough for spectroscopic follow-up. Beyond leading these two specific projects, my observations with Dragonfly and NEOSSat have thus far contributed to 10 other publications for which I am co-author.

Page generated in 0.1183 seconds