• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 2
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Astrophysique de laboratoire avec les lasers de haute énergie et de haute puissance : des chocs radiatifs aux jets d'étoiles jeunes

Dizière, Alexandra 20 February 2012 (has links) (PDF)
L'astrophysique de laboratoire est un domaine de la Physique des Hautes Densités d'Énergie en plein essor. Elle vise à recréer en laboratoire des processus physiques difficilement accessibles avec les diagnostics astronomiques. Nous aborderons, dans cette thèse, trois sujets majeurs: 1) les jets issus d'étoiles jeunes caractérisés par une collimation importante et se terminant par un choc d'étrave; 2) les chocs radiatifs pour lesquels le rayonnement propre du choc joue une rôle prépondérant dans sa structure et 3) les chocs d'accrétion dans le cas des variables cataclysmiques magnétiques dont l'important facteur de refroidissement permet d'atteindre la stationnarité. De la conception à la réalisation expérimentale, nous nous attacherons à reproduire en laboratoire chacun de ces processus en respectant les lois d'échelle liant les deux situations (expérimentale et astrophysique) précédemment établies. L'implémentation d'un grand nombre de diagnostics visibles et X nous permettra enfin de les caractériser complètement et de calculer les nombres sans dimension assurant la pertinence astrophysique.
12

Plasmas Lasers et Champs Magnétiques

Albertazzi, B. 10 January 2014 (has links) (PDF)
Nous avons étudié le couplage entre un plasma crée par laser et un champ magnétique dans deux configurations : 1) celle où les champs magnétiques sont autogénérés au cours de l'interaction laser-plasma, problématique liée à celle de la Fusion par Confinement Inertiel (FCI) et 2) celle où un champ magnétique externe est appliqué à un plasma laser en expansion libre dans le vide, configuration permettant notamment la modélisation en laboratoire des jets de matière observés en astrophysique. La première partie de cette thèse est donc dédiée à une étude numérique et expérimentale de la dynamique des champs magnétiques autogénérés lors de l'irradiation d'une cible solide par un laser de puissance (de durée d'impulsion nanoseconde ou picoseconde). Ces champs sont à considérer dans le cadre de la FCI car, en influençant la dynamique des électrons générés dans l'interaction, ils conditionnent en partie la réussite des expériences de fusion. La seconde partie de cette thèse est dédiée à l'étude expérimentale et numérique de la capacité qu'a un champ magnétique externe à modifier la morphologie d'un jet de plasma produit par laser, notamment à le collimater. Ce travail vise à mieux comprendre le phénomène de collimation à grande échelle observée dans les jets astrophysiques. Nous montrons notamment qu'un champ magnétique purement axial peut contraindre un écoulement, au départ isotrope, en un choc de recollimation générant un étroit jet bien collimaté, un phénomène non expliqué dans le cadre des théories jusqu'alors prévalentes. La convergence observée, et le chauffage subséquent, du plasma au point recollimation sont de plus avancés comme permettant d'expliquer d'intrigantes observations d'émission X stationnaire au sein des jets astrophysiques.
13

Collisionless shocks in the context of Laboratory Astrophysics / Chocs non-collisionnels dans le cadre de l'astrophysique de laboratoire

Grassi, Anna 26 October 2017 (has links)
Cette thèse s'inscrit dans le cadre de l'astrophysique de laboratoire. Nous abordons divers aspects de la physique des chocs non-collisionels en présence de flots de plasma relativistes dans des configurations d'intérêt pour les communautés astrophysique et de l’interaction laser-plasma (ILP). Notre approche repose sur la modélisation analytique et la simulation cinétique haute-performance, outil central pour décrire les processus d'ILP et la physique non linéaire à l'origine des chocs étudiés. Le code Particle-in-Cell SMILEI a été largement utilisé et développé au cours ce travail. Trois configurations physiques sont étudiées. L’instabilité Weibel en présence de faisceaux d'électrons contre-propagatifs alignés avec un champ magnétique externe est décrite. Les phases linéaires et non linéaires sont expliquées à l’aide de modèles théoriques confirmés par des simulations. La génération de chocs non-collisionels lors de l’interaction de deux plasmas relativistes de paires est étudiée en présence d’un champ magnétique perpendiculaire. L’accent est mis sur la comparaison des prédictions théoriques sur les grandeurs macroscopiques avec les simulations, ainsi que sur la définition du temps de formation du choc, l’ensemble de ces grandeurs étant d’une grande importance pour de futures expériences. Enfin, nous proposons un schéma permettant de recréer, en laboratoire, l’instabilité Weibel ionique par l'utilisation d'un laser intense. Les flots de plasmas produits ici sont plus rapides et denses que dans les expériences actuelles, conduisant à un taux de croissance et des champs magnétiques plus élevés. Ces résultats sont également important pour l’ILP à très haute intensité. / The work presented in this thesis belongs to the general framework of Laboratory Astrophysics. We address various aspects of the physics of collisionless shocks developing in the presence of relativistic plasma flows, in configurations of interest for the astrophysical and the laser-plasma interaction (LPI) communities. The approach used throughout this thesis relied on both analytical modeling and high-performance kinetic simulations, a central tool to describe LPI processes as well as the non-linear physics behind shock formation. The PIC code SMILEI has been widely used and developed during this work. Three physical configurations are studied. First we consider the Weibel instability driven by two counter-streaming electron beams aligned with an external magnetic field. The linear and non-linear phases are explained using theoretical models confirmed by simulations.Then the generation of non-collisional shocks during the interaction of two relativistic plasma pairs is studied in the presence of a perpendicular magnetic field. We focus on the comparison of theoretical predictions for macroscopic variables with the simulation results, as well as on the definition and measurement of the shock formation time, all of which are of great importance for future experiments.Finally, we proposed a scheme to produce, in the laboratory, the ion-Weibel-instability with the use of an ultra-high-intensity laser. The produced flows are faster and denser than in current experiments, leading to a larger growth rate and stronger magnetic fields. These results are important for the LPI at very high intensity.

Page generated in 0.0942 seconds