• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved performance characteristics of induction machines with non-skewed symmetrical rotor slots

Chitroju, Rathna January 2009 (has links)
<p>Induction machines convert more than 55% of electrical energy into various other forms in industrial and domestic environments. Improved performance, especially by reduction of losses in induction machines hence can significantly reduce consumption of electricity. Many design and control methods are adopted to make induction machines work more efficiently, however certain design compromises are inevitable, such as skewing the rotor to improve the magnetic noise and torque characteristics increase the cross current losses considerably in a cage rotor, degrading the efficiency of the motor. Crosscurrent losses are the dominating stray losses which are dependent on several factors among them are percentage skew and the contact resistance between the rotor bars and laminations. It is shown in this thesis that implementing a design change which has non-skewed asymmetrical distribution of rotor slots can serve the same purpose as skewing i.e., reduction of the magnetic noise, thereby avoiding the negative effects of skewing the rotor slots especially by reducing the cross-current losses.</p><p>Two design ethodologies to introduce asymmetry in rotor slots are proposed and the key performance characteristics like torque ripple, radial air gap forces are computed both numerically and analytically. Radial forces obtained from the finite element method are coupled to the analytical tool forcalculating the magnetic noise. A spectral method to calculate and separate the radial forces into vibration modes and their respective frequencies is proposed and validated for a standard 4-pole induction motor. The influence of rotor slot number, eccentricity and skew on radial forces and magnetic noise are studied using finite element method in order to understand the vibrational and acoustic behavior of the machine, especially for identifying their sources. The validated methods on standard motors are applied for investigating the asymmetrical rotor slot machines.</p><p>Radial air gap forces and magnetic noise spectra are computed for the novel dual and sinusoidal symmetrical rotors and compared with the standard symmetrical rotor. The results obtained showed reduced radial forces and magnetic noise in asymmetrical rotors, both for the eccentric and noneccentric cases. Based on the results obtained some guide lines for designing  asymmetrical rotor slots are established. Magnitudes of the harmful modes of vibration observed in the eccentric rotors, which usually occur in reality, are considerably reduced in asymmetrical rotors showing lower sound intensity levels produced by asymmetrical rotors. The noise level from mode-2 vibration in a 4-pole standard 15 kW motor running with 25% static eccentricity is decreased by about 6 dB, compared to the standard rotors. Hence improved performance can be achieved by removing skew which reduces cross current losses and by employing asymmetrical rotor slots same noise level can be maintained or can be even lowered.</p><p> </p><p> </p>
2

Performance Analysis of Unskewed Asymmetrical Rotor for LV Induction Motors

Shaukat, Usman January 2012 (has links)
This master thesis presents a comparative analysis of the starting performance and losses at rated operation for a 15 kW, 4-pole industrial induction motor, mounted with standard skewed, unskewed and unskewed asymmetrical die-cast aluminium rotors through measurements and simulations. It is a well-known fact that rotor skewing suppresses the synchronous torques at low speeds and also reduces the audible noise of the machine. However, the casting process results in a low resistive path between the rotor bars and the iron laminations, for skewed rotors, this promotes the flow of inter-bar currents. These currents, flowing between the rotorbars, increase the harmonic torques during a start and create additional losses at rated operation. For standard unskewed rotors, these losses are ideally zero, but these rotors may produce high audible noise. Studies have shown that rotors with asymmetrical rotor slot pitch can reduce the audible noise level in unskewed machines. By removing the skew, the inter-bar current losses are suppressed to a negligible level; ultimately increased machine efficiency is obtained. In this work the electrical performance is verified through measurements on the built prototypes. Direct-on-line starts and rated performance for motors with different rotor slot arrangements is simulated using 2D FEM tool FCSmek. The three prototypes are tested in the laboratory according to IEC 60034-2-1 standard and the simulation results are in good agreement with the measured results. An additional test for the measurement of high frequency delta connected stator winding currents for each prototype machine is also performed, in order to study the losses induced in the stator winding. Results have shown that by introducing the proposed asymmetry in the rotor slots, the synchronous torques at low speeds are suppressed effectively, thus, improving the starting performance of the asymmetrical rotor compared to the standard unskewed rotor. Additionally, a higher pull-out torque is obtained for the unskewed rotor motor compared to the standard skewed rotor motor. However, the losses were more or less re-distributed in the unskewed rotor motor, resulting in similar efficiency as the standard skewed rotor motor. One important observation is that; to capture the inter-bar current losses which are estimated to be 5.5% of the total losses, requires more accurate methods of measurements than the existing. And sufficient repeatability must be achieved; alternatively one should rely on statistical data obtained from measurements on several number of motors.
3

Improved performance characteristics of induction machines with non-skewed symmetrical rotor slots

Chitroju, Rathna January 2009 (has links)
Induction machines convert more than 55% of electrical energy into various other forms in industrial and domestic environments. Improved performance, especially by reduction of losses in induction machines hence can significantly reduce consumption of electricity. Many design and control methods are adopted to make induction machines work more efficiently, however certain design compromises are inevitable, such as skewing the rotor to improve the magnetic noise and torque characteristics increase the cross current losses considerably in a cage rotor, degrading the efficiency of the motor. Crosscurrent losses are the dominating stray losses which are dependent on several factors among them are percentage skew and the contact resistance between the rotor bars and laminations. It is shown in this thesis that implementing a design change which has non-skewed asymmetrical distribution of rotor slots can serve the same purpose as skewing i.e., reduction of the magnetic noise, thereby avoiding the negative effects of skewing the rotor slots especially by reducing the cross-current losses. Two design ethodologies to introduce asymmetry in rotor slots are proposed and the key performance characteristics like torque ripple, radial air gap forces are computed both numerically and analytically. Radial forces obtained from the finite element method are coupled to the analytical tool forcalculating the magnetic noise. A spectral method to calculate and separate the radial forces into vibration modes and their respective frequencies is proposed and validated for a standard 4-pole induction motor. The influence of rotor slot number, eccentricity and skew on radial forces and magnetic noise are studied using finite element method in order to understand the vibrational and acoustic behavior of the machine, especially for identifying their sources. The validated methods on standard motors are applied for investigating the asymmetrical rotor slot machines. Radial air gap forces and magnetic noise spectra are computed for the novel dual and sinusoidal symmetrical rotors and compared with the standard symmetrical rotor. The results obtained showed reduced radial forces and magnetic noise in asymmetrical rotors, both for the eccentric and noneccentric cases. Based on the results obtained some guide lines for designing  asymmetrical rotor slots are established. Magnitudes of the harmful modes of vibration observed in the eccentric rotors, which usually occur in reality, are considerably reduced in asymmetrical rotors showing lower sound intensity levels produced by asymmetrical rotors. The noise level from mode-2 vibration in a 4-pole standard 15 kW motor running with 25% static eccentricity is decreased by about 6 dB, compared to the standard rotors. Hence improved performance can be achieved by removing skew which reduces cross current losses and by employing asymmetrical rotor slots same noise level can be maintained or can be even lowered. / QC 20110221

Page generated in 0.0853 seconds