• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 16
  • 12
  • 10
  • Tagged with
  • 172
  • 172
  • 35
  • 27
  • 27
  • 26
  • 20
  • 18
  • 18
  • 18
  • 15
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Asymmetrische Synthese von Tarchonanthuslacton und Pironetin-Bausteinen

Steinbusch, Daniel. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
42

Synthese und biologische Evaluierung von Stevastelinanaloga

Manger, Michael. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Dortmund.
43

Asymmetrische Synthese von hoch substituierten d-Lactonen Synthese der Prelactone B und V, von Simplacton B und von Massoialacton /

Job, Mareile. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2005--Aachen.
44

Chirale 9-Oxabispidine - Design, enantioselektive Darstellung und Anwendung in der asymmetrischen Synthese / Chiral 9-oxabispidines - design, enantioselective preparation and application in asymmetric synthesis

Steiner, Melanie January 2010 (has links) (PDF)
Der bekannteste Vertreter der Bispidine ist das Lupinenalkaloid (–)-Spartein, das vor allem in enantioselektiven Deprotonierungen aber auch Übergangsmetall-katalysierten asymmetrischen Reaktionen als Ligand der Wahl eingesetzt wird. Daneben gibt es nur wenige weitere synthetische Vertreter, da keine flexiblen Darstellungsmethoden zu enantiomerenreinen Bispidinen mit variablen Substituenten in 2-endo-Position existieren. Ein zielgerichtetes Design solcher Verbindungen war daher bisher nur eingeschränkt möglich. So sollte in dieser Arbeit eine neue Substanzklasse als chirale Liganden in der asymmetrischen Synthese etabliert werden: 2-endo-substituierte 9-Oxabispidine. Das Brücken-Sauerstoffatom sollte die Synthese stark vereinfachen. Insgesamt wurden drei strategisch unterschiedliche Methoden zur enantioselektiven Synthese von 2-endo-substituierten 9-Oxabispidinen entwickelt. Zunächst ist die sehr kurze Route zu 2-endo-Phenyl-substituierten Derivaten mit diversen Resten R' an den Stickstoff-Funktionen zu nennen. Ausgehend von käuflichem (R,R)-Phenylglycidol wurde (S,S)-3-Benzylamino-3-phenyl-1,2-propandiol dargestellt, das in einer Dreistufen-Eintopf-Reaktion mit (S)-Epichlorhydrin kondensiert und zum all-cis-konfigurierten 2,6-Dimesyloxymethyl-3-phenylmorpholin mesyliert wurde. Die finale Cylisierung erfolgte mit primären Aminen zu verschiedenen 2-endo-Phenyl-9-oxabispidinen in insgesamt drei bis fünf Stufen. Die Darstellung des tricyclischen 9-Oxa-Derivats eines bekannten (+)-Spartein-Ersatzstoffs gelang nach einem verwandten Syntheseprotokoll. Für eine effiziente Variation des 2-endo-Substituenten auf einer späten Synthesestufe wurde zunächst enantiomerenreines 3N-Boc-7N-Methyl-9-oxabispidin-2-on als Schlüsselintermediat ausgewählt, das aus (R)-Epichlorhydrin und racemischem Glycidsäuremethylester dargestellt wurde. Die weitere Überführung in die 9-Oxabispidine wurde durch Grignard-Addition, Abspaltung der N-Boc-Gruppe vom resultierenden, ringoffenen N-Boc-Aminoketon, Cyclisierung zum Imin und abschließende, exo-selektive Reduktion oder Hydrierung erreicht. So wurden bi- und tricyclische 9-Oxabispidine in nur drei Stufen und 51% Ausbeute synthetisiert. Ein größeres Potenzial besitzt jedoch der primär von David Hein parallel zu den eigenen Arbeiten entwickelte Zugang über ein cis-konfiguriertes 6-(N-Boc-Aminomethyl)morpholin-2-carbonitril als zentrale Zwischenstufe, das auch im 10-g-Maßstab problemlos erhältlich war. Die allgemeine Anwendbarkeit und Flexibilität dieser Methode wurde anhand der Darstellung einer Reihe an 9-Oxabispidinen demonstriert. Die dargestellten chiralen 9-Oxabispidine wurden erstmalig in den folgenden fünf unterschiedlichen Gebieten der asymmetrischen Synthese getestet: Organolithium- und Organomagnesium-vermittelte Umsetzungen sowie Pd(II)-, Cu(II) und Zink(II)-katalysierte Reaktionen. Für enantioselektive Deprotonierungen schwach C-H-acider Verbindungen mit sBuLi erwiesen sich die 9-Oxabispidine als ungeeignet, da sie selbst in Brückenkopfposition lithiiert wurden. Die Stabilität der resultierenden -Lithioether war unerwartet hoch; sie ließen sich beispielsweise bei -78 °C in guten Ausbeuten mit Elektrophilen abfangen. Umlagerungen traten erst beim Aufwärmen ein, wenn kein Elektrophil als Reaktionspartner zur Verfügung stand. Als definierte Produkte wurden dabei Ring-kontrahierte N,O-Acetale erhalten. Zusammen mit den weniger basischen Grignard-Reagenzien wurden die 9-Oxabispidine erfolgreich zur Desymmetrisierung von meso-Anhydriden verwendet. Bei Pd(II)-katalysierten oxidativen kinetischen Racematspaltungen sekundärer Alkohole konnten mit einem 9-Oxabispidin-Pd(II)-Katalysator Selektivitätsfaktoren s vergleichbar zu denen mit (–)-Spartein erzielt werden. Die Ursache für die geringere Reaktivität der 9-Oxabispidin-Komplexe liegt gemäß quantenchemischen Berechnungen in der Elektronegativität des Brücken-Sauerstoffatoms, was die Elektronendichte am Palladiumatom verringert. In Kooperation mit David Hein wurde ein von einem tricyclischen 9-Oxabispidin abgeleiteter Cu-Katalysator entwickelt, der bei der Addition von Nitromethan an zahreiche aromatische, heteroaromatische und aliphatische Aldehyde exzellente Enantioselektivitäten im Bereich von 91–97% lieferte. Mit bicyclischen, 2-endo-substituierten 9-Oxabispidinen als chiralen Liganden wurden hingegen lediglich 33-57% ee erreicht  bemerkenswerterweise entstanden hierbei bevorzugt die enantiokomplementären β-Nitroalkohole. In Zusammenarbeit mit Janna Börner aus der Arbeitsgruppe von S. Herres-Pawlis wurde der erste chirale, neutrale Diamin-Zink(II)-Katalysator für die Ringöffnungs-Polymerisation von D,L-Lactid entwickelt. Die Reaktion benötigte kein weiteres anionisches Additiv und konnte ohne Lösungsmittel mit nicht-aufgereinigtem, käuflichem Lactid durchgeführt werden. / The most famous representative of the bispidines is the lupine alkaloid (–)-sparteine, which ist he ligand of choice in enantioselective deprotonations but also transition metal catalyzed asymmetric transformations. Besides there are only a few other synthetic bispidines known, since there is no flexible synthetic approach to enantiomerically pure bispidines with variable substituents in 2-endo-position. This strongly hampered a directed design of such compounds. In this work a novel class of substances should be established as chiral ligands in asymmetric synthesis: 2-endo-substituted 9-oxabispidines. The oxygen atom in the bridgeshould simplify their accessibility. Three strategically different enantioselective routes to 2-endo-substituted 9-oxabispidines were developed. The 2-endo-phenyl-substituted derivatives were available by a very short approach. Starting with the commercially available (R,R)-phenyl glycidol and benzylamine, (S,S)-3-benzylamino-3-phenyl-1,2-propandiol was prepared, condensed with (S)-epichlorohydrin in a three-step one-pot protocol, and mesylated to give the all-cis-configured 2,6-dimesyloxymethyl-3-phenylmorpholine. Final cyclization with primary amines afforded a series of 2-endo-phenyl-9-oxabispidines 25 in totally three to five steps. The tricyclic 9-oxa derivative of a known (+)-sparteine surrogate was analogously synthesized. Enantiomerically pure 3N-Boc-7N-methyl-9-oxabispidin-2-one was choosen as the key intermediate for an efficient preparation of 9-oxabispidines by variation of the 2-endo substituent at a late stage of the synthesis. The conversion into the 9-oxabispidines was achieved by Grignard addition, cleavage of the amino group from the resulting N-Boc amino ketone, cyclization to an imine, and exo-selective reduction or hydrogenation. In this manner the enantiomerically pure bi- and tricyclic 9-oxabispidines were synthesized in three steps and 51% yield. An even more efficient route to 9-oxabispidines from a cis-configured nitrile as the chiral key intermediate, was developed by D. Hein in parallel to the own work. The general applicability and flexibility of this approach was demonstrated in the synthesis of a set of 9-oxabispidines. The chiral 9-oxabispidines prepared were evaluated in five different areas of asymmetric synthesis: organolithium and organomagnesium mediated transformations as well as Pd(II), Cu(II), and Zn(II) catalyzed reactions. The 9-oxabispidines were not suited as chiral ligands in enantioselective deprotonations of weakly C-H-acidic molecules with sBuLi, since they were lithiated at the bridgehead positions themselves. The unusual high stability of the anions allowed to trap them with electrophiles at -78 °C in good yields. Rearrangements of the lithiated 9-oxabispidines occurred only upon warming in the absence of an electrophile delivering ring contracted N,O-acetals. In the presence of Grignard reagents, which are less basic than organolithium compounds, the 9-oxabispidines were successfully applied in the desymmetrization of meso-anhydrides. In Pd(II)-catalyzed oxidative kinetic resolutions of secondary alcohols good to excellent selectivity factors s, comparable to those obtained with ()-sparteine were achieved with a 9-oxabispidine-Pd(II)-catalyst. According to quantum chemical calculations, the lower reactivity of the 9-oxabispidine complexes can be explained by the higher electronegativity of the bridgehead oxygen, which decreases the electron density at the Pd atom. In cooperation with David Heina 9-oxabispidine-derived Cu-catalyst was developed, which gave excellent enantioselectivities in the range of 91–97% in the addition of nitromethane to several aromatic, heteroaromatic, and aliphatic aldehydes. The analogous catalysts with bicyclic, 2-endo-substituted 9-oxabispidines as the chiral ligands surprisingly provided the enantiocomplementary β-nitro alcohols, albeit in 33–57% ee. In cooperation with Janna Börner of the group of S. Herres-Pawlis the 9-oxabispidine-zinc(II)acetato-complex was applied as a catalyst in the ring-opening polymerisation of D,L-lactide. This diamino-zinc complex is the first chiral and neutral catalyst that requires no anionic additive and allows solvent-free conditions.
45

Synthese intrinsisch axial-chiraler mono-, di und trimerer Porphyrine sowie Strukturaufklärung und stereochemische Analyse von chiralen Porphyrinoiden und Naturstoffen durch HPLC-NMR- und HPLC-CD-Kopplung / Synthesis of intrinsically axially chiral mono-, di-, and trimeric porphyrins and structural elucidation and stereochemical analysis of chiral porphyrinoids and natural products by HPLC-NMR and HPLC-CD coupling

Götz, Daniel Christian Günter January 2010 (has links) (PDF)
Seit der Strukturaufklärung der grünen Blattpigmente Chlorophyll a und Chlorophyll b sowie des roten Blutfarbstoffes Häm durch Richard Willstätter und Hans Fischer zu Beginn des 20. Jahrhunderts stehen tetrapyrrolische Naturstoffe weltweit im Fokus unzähliger biologischer, medizinischer, physikalischer und chemischer Forschungsarbeiten. Heute spielen insbesondere Porphyrine – die prominentesten Vertreter der synthetischen Tetrapyrrol-Makrocyclen – eine bedeutende Rolle in der modernen angewandten Chemie, etwa als metallorganische Katalysatoren, als Photosensibilisatoren in der photodynamischen Krebstherapie oder auf dem Gebiet der Materialwissenschaften. Neben monomeren Porphyrinen sind dabei v.a. Multiporphyrine mit maßgeschneiderten photophysikalischen Eigenschaften und definierter dreidimensionaler Struktur höchst attraktive Syntheseziele. Im Gegensatz zum immensen Forschungsinteresse an achiralen Porphyrin-Systemen wurde der Darstellung und stereochemischen Charakterisierung chiraler Porphyrinoide bislang vergleichsweise wenig Beachtung geschenkt. Insbesondere optisch aktive Vertreter mit stereo-genen Porphyrin-Aryl-Achsen und intrinsisch axial-chirale Oligoporphyrine wurden bislang kaum untersucht. Aufgrund eines Mangels an geeignet funktionalisierten tetrapyrrolischen Vorläufern sind hierbei Strukturmotive mit β-Verknüpfung besonders unterrepräsentiert. Die generell spärliche Beschreibung axial-chiraler Porphyrin-Systeme und ihrer chiroptischen Eigenschaften liegt hauptsächlich in der oft extrem schweren Zugänglichkeit entsprechender Verbindungen – insbesondere in optisch reiner Form – begründet. Aufgrund der derzeit rapide ansteigenden Bedeutung chiraler Porphyrinoide sind die Synthese und stereochemische Analyse sowie eine Erweiterung des bis dato mehr als begrenzten methodischen Repertoires zur stereoselektiven Darstellung von chiralen Porphyrin-Derivaten von größtem Interesse. Ziel der vorliegenden Arbeit war daher die Etablierung effizienter und vielseitig ein-setzbarer Verfahren zum Aufbau komplexer axial-chiraler Mono- und Multiporphyrine mit maßgeschneiderten chemischen, physikalischen und chiroptischen Eigenschaften sowie unter-schiedlicher räumlicher Anordnung der Chromophore. Desweiteren sollten erstmals verschiedene Konzepte zur stereoselektiven Synthese axial-chiraler Porphyrin-Systeme entwickelt und vergleichend erprobt werden. Bei allen bearbeiteten Fragestellungen standen ein tieferes Verständnis stereochemischer Aspekte sowie die eingehende Untersuchung der chiroptischen Eigenschaften (z.B. unter Anwendung moderner HPLC-Kopplungstechniken) der neuartigen synthetisierten Verbindungen im Vordergrund. / Since the structural elucidation of the green leaf pigments chlorophyll a and chlorophyll b and the red blood dye heme by Richard Willstätter and Hans Fischer in the early 20th century, the broad area of tetrapyrrole research has become one of the most exciting, stimulating, and rewarding for scientists from most diverse disciplines like biology, medicince, and chemistry. Today in particular porphyrins – the most prominent representatives amongst synthetic tetrapyrroles – play a crucial role in modern applied chemistry, e.g., as metalorganic catalysts, as photosensitizers in photodynamic cancer therapy or in the field of material science. Besides monomeric porphyrins predominantly multiporphyrin arrays with tailor-made photophysical properties and well-defined three-dimensional structure display highly attractive synthetic targets. In contrast to the tremendous research interests in achiral porphyrin systems comparatively little attention has been paid to the synthesis and stereochemical characterization of chiral porphyrinoids. Especially optically active representatives with stereogenic porphyrin-aryl axes and intrinsically axially chiral oligoporphyrins have hardly been investigated so far. Due to a lack of suitably functionalized tetrapyrrolic precursors, structural motifs based on β-coupled subunits are particularly underrepresented. The fact that axially chiral porphyrins and their chiroptical properties have in general attracted only low attention can be ascribed to the extremely difficult accessibility of such compounds – especially in optically pure form. Be-cause of the nowadays rapidly increasing importance of chiral porphyrinoids, their synthesis and stereochemical analysis as well as an expansion of the – so far greatly limited – methodological repertoire for the stereoselective construction of chiral porphyrin derivatives is of highest interest. Thus, the aim of the present work was to establish efficient and widely applicable procedures for the construction of structurally complex axially chiral mono- and multiporphyrins with taylor-made chemical, physical, and chiroptical properties and well-defined spatial arrangement of the chromophores. In addition, different concepts for the stereoselective synthesis of axially chiral porphyrin systems were to be developed and comparatively evaluated for the first time. For all investigations the main focus concentrated on gaining detailed knowledge of stereochemical aspects and on closely studying the chiroptical behavior (e.g., by using modern HPLC hyphenation techniques) of the newly synthesized compounds.
46

Asymmetrische Weitz-Scheffer-Epoxidierung mit optisch aktiven Hydroperoxiden oder Phasentransferkatalysatoren / Asymmetric Weitz-Scheffer Epoxidation with Optically Active Hydroperoxides or Phase-Transfer Catalysts

Degen, Hans-Georg January 2002 (has links) (PDF)
In der vorliegenden Dissertation werden optisch aktive Hydroperoxide I als enantioselektive Oxidationsmittel in der Weitz-Scheffer-Epoxidierung von Enonen II eingesetzt. Dabei sollten zunächst die besten Reaktionsbedingungen für eine effektive asymmetrische Induktion gefunden werden, um anhand dieser den Mechanismus des enantioselektiven Sauerstofftransfers aufzuklären. In einer weiteren Studie werden Chinconin- und Chinconidin-abgeleitete optisch aktive Phasentransferkatalysatoren (PTK) IV zur asymmetrischen Epoxidierung von Enonen II mit racemischen Hydroperoxiden I genutzt, wobei vordergründig die kinetische Racematspaltung der verwendeten Hydroperoxide I untersucht werden sollte. Darauf aufbauend wurde eine höchst effektive Methode zur enantioselektiven Epoxidierung von Isoflavonen V mit kommerziell erhältlichen, achiralen Hydroperoxiden entwickelt. 1. Die Optimierung der Reaktionsbedingungen an Chalkon IIa zeigt, dass die höchste Enantioseitendifferenzierung mit (S)-(-)-1-Phenylethylhydroperoxid (Ia) und KOH in Schema A: Asymmetrische Weitz-Scheffer-Epoxidierung mit optisch aktiven Hydroperoxiden I und den Basen KOH oder DBU als Katalysatoren Acetonitril bei –40 °C möglich ist. Dabei bildet sich das (alphaS,betaR)-Epoxid IIIa in 51 Prozent ee. Im Gegensatz dazu wird in Toluol bei 20 °C mit der Base DBU das entgegengesetzt konfigurierte (alphaR,betaS)-Epoxid IIIa in einem Enantiomerenüberschuss von 40 Prozent gebildet. Die Art der Base beeinflusst demnach grundlegend den stereochemischen Verlauf der Reaktion. Um diesen Effekt mechanistisch zu ergründen wird der elektronische Charakter der Arylreste im Enon II systematisch variiert, was allerdings nur zu einer geringen Veränderung der Enantioselektivität führt. Einen größeren Einfluss auf das Ausmaß der Enantioseitendifferenzierung in dieser asymmetrischen Weitz-Scheffer-Epoxidierung hat, sowohl bei der Reaktionsführung mit DBU in Toluol als auch mit KOH in CH3CN, der sterische Anspruch des beta-Substituenten im Enon II. Aufgrund der maßgeblichen Signifikanz der Größe des beta-Substituenten wird eine Templatstruktur T+ (Abbildung A) vorgeschlagen, in der eine sterische Wechselwirkung zwischen dem beta-Substituenten des Enons II und dem Hydroperoxyanion I- den Abbildung A: Bevorzugte Anordnungen in der Templatstruktur für die KON-vermittelte und die DBU-vermittelte Epoxidierung stereochemischen Verlauf der Epoxidierung bestimmt. Das Aggregat aus Substrat, Hydroperoxid und Gegenion wird in Form eines Templats T+ durch das K+-Ion oder das protonierte Amin DBU-H+ zusammengehalten. Dadurch wird den entgegengesetzten Enantioselektivitäten Rechnung getragen, die für diese beiden Basen beobachtet werden. Aus Abbildung A wird ersichtlich, dass die unterschiedliche Größe der K+- oder DBU-H+-Kationen und des beta-Substituenten im Templat wichtig für eine effektive Diskriminierung der beiden möglichen Angriffe T+-(Si) und T+-(Re) ist. Für das relativ kleine Kaliumion dominiert die Wechselwirkung zwischen dem beta-Substituenten und dem Hydroperoxid I. Diese wird im T+-(Si)-Angriff minimiert, indem das Wasserstoffatom am stereogenen Zentrum des Hydroperoxids I auf der Seite des Enons II steht. In der Epoxidierung mit der sterisch anspruchsvolleren Base DBU tritt die Wechselwirkung zwischen DBU-H+ und dem Hydroperoxid im Templat in den Vordergrund, was den Angriff auf der Re-Seite bedingt. Demnach werden mit KOH die besten Enantioselektivitäten für große beta-Substituenten beobachtet, wohingegen für die Amin-vermittelte Epoxidierung eine große Base, wie DBU, vorteilhaft ist. Sowohl für KOH als auch für DBU als Basenkatalysatoren wird die Validität der Templatstruktur durch weitere Variation der Reaktionsbedingungen geprüft. Wenn K+ durch den Kronenether 18-Krone-6 komplexiert wird oder anstelle von DBU-H+ eine nicht-koordinierende Schwesinger Base verwendet wird, das Templat also nicht durch Koordination gebildet werden kann, werden deutlich niedrigere Enantioselektivitäten in der Epoxidierung beobachtet. Die Notwendigkeit der S-cis-Konformation des Enons II für die Bildung des Templats, wird durch Untersuchungen mit konformationell fixierten Enonen untermauert. So wird die Enantioselektivität bei der Epoxidierung eines S-cis-fixierten Enons (IIb) auf bis zu 90 Prozent ee erhöht, während sie bei einer S-trans-Fixierung des Enons deutlich auf < 5 Prozent ee abfiel. Fazit: Mit den optisch aktiven Hydroperoxiden I wird in der Weitz-Scheffer-Epoxidierung durch die Wahl geeigneter Basen, KOH oder DBU, sowohl das (alphaS,betaR)-Epoxid III (bis zu 90 Prozent ee) als auch das (alphaR,betaS)-Epoxid (bis zu 72 Prozent ee) erhalten. Welches Enantiomer überwiegt kann dabei allein durch die Wahl der Base gesteuert werden. Die Enantioseitendifferenzierung wird durch sterische Wechselwirkungen in einem Templat aus Enon II, Hydroperoxid I und den Kationen K+ oder DBU-H+ bestimmt. Die kinetische Racematspaltung chiraler Hydroperoxide I durch Weitz-Scheffer-Epoxidierung mit optisch aktiven Chinconin-basierten Phasentransferkatalysatoren (PTK) IV wird untersucht, bei der als willkommenes „Nebenprodukt" optisch aktive Isoflavonepoxide VI (Schema B) mit bis zu 92 Prozent ee entstehen. Die Racematspaltung ist Schema B: Kinetische Racematspaltung des chiralen Hydroperoxids Ia mittels Weitz-Scheffer-Epoxidierung und dem optisch aktiven PTK IV jedoch nicht effektiv, es werden ee-Werte von maximal 33 Prozent erzielt. Auf dieser Basis wird eine Methode zur asymmetrischen Epoxidierung der Isoflavonen (V) (Schema C) mit dem Schema C: Enantioselektivitäten für die Epoxidierung der Enone IIb,c und des Isoflavons Vb in Anwesenheit des PTK IV kommerziell verfügbaren Cumylhydroperoxid entwickelt, die für das Isoflavon Vb bis zu 98 Prozent ee zu Gunsten des (1aR,7aS)-Epoxids ergibt. Die hohe Enantioselektivität wird mit dem Templat A (Schema D) erklärt, in dem eine H-Brücke von der Hydroxy-Funktion des PTK IV Schema D: Wasserstoffbrückengebundene Templatstrukturen A und B zum endocyclischen Ethersauerstoffatom des Isoflavons V ausgeht. Die Relevanz einer solchen H-Brücke ist durch Methylierung der Hydroxy-Funktion des PTK IV demonstriert. Zudem ist die Wichtigkeit dieses Ethersauerstoffatoms durch die Tatsache untermauert, dass das konformationell ähnliche Enon IIc (Schema C) nahezu unselektiv epoxidiert wird (18 Prozent ee). Eine analoge H-Brücke nunmehr zum Carbonylsauerstoffatom des S-cis-fixierten Enons IIb wird als Erklärung für dessen hoch enantioselektive Epoxidierung (95 Prozent ee) postuliert (Templat B, Schema D). Fazit: Die asymmetrische Weitz-Scheffer-Epoxidierung mit dem optisch aktiven Phasentransferkatalysator IV wird zur Herstellung fast enantiomerenreiner Epoxide (bis zu 98 Prozent ee) genutzt. Für die Enantioseitendifferenzierung zeigt sich die Ausbildung einer H-Brücke zwischen PTK IV und Substrat II oder V als essentiell. In der kinetischen Racematspaltung chiraler Hydroperoxide I ist diese Epoxidierung nicht effektiv. / In the present dissertation, optically active hydroperoxides I are employed as enantioselective oxidants in the asymmetric Weitz-Scheffer epoxidation of enones II. On the basis of the reaction conditions, optimized for high enantioselectivities, the mechanistic details of this asymmetric oxygen transfer are presented. In the second part of the study, chinconine-derived phase-transfer catalysts (PTC) IV are used for the asymmetric epoxidation of enones II with racemic hydroperoxides I. The primary objective of this part is the kinetic resolution of the racemic hydroperoxides. Based on the results, a highly effective method for the enantioselective epoxidation of isoflavones V with commercially available, achiral hydroperoxides is described. 1. The optimization of the reaction conditions shows that the highest enantioselectivities may be obtained with (S)-(-)-1-phenylethyl hydroperoxide Ia and KOH in acetonitrile at –40 °C, namely 51 per cent ee of the (alphaS,betaR)-epoxide IIIa (Scheme A). On the contrary, with DBU as base Schema A: Asymmetric Weitz-Scheffer Epoxidation with the Optically Active Hydroperoxide I and KOH or DBU as Base Catalysts in toluene at 20 °C, the opposite (alphaR,betaS)-epoxide IIIa enantiomer is obtained in 40 per cent ee. Thus, the nature of the base plays a decisive role in the stereochemical course of the reaction. To assess the mechanistic details of this base effect, the substituents in the enone II are varied systematically. Whereas the electronic character of the aryl substituents is found to play a minor role, the steric demand of the beta substituent significantly influences the extent of the enantiofacial differentiation, both in the KOH- and the DBU-mediated epoxidations. The important role of the steric demand, exercised by the beta substituent of the enone II in the stereochemical course of this epoxidation, is rationalized in terms of the template structure T+ (Figure A). This template structure is made up of the enone II and the hydroperoxide anion I-, held together by the templating agent K+ or DBU-H+, which allows to account for both the opposite enantioselectivities observed with the different types of bases, KOH or DBU, and the role of the beta substituent in the enone substrate II, through its steric interaction with the hydroperoxide anion I-. Moreover, it is illustrated that the size of both the templating Figure A: Preferred Arrangement in the Template Structure for the KOH- and DBU-Mediated Epoxidations agent, K+ or DBU-H+, and the beta substituent play a significant role in the discrimination between the T+-(Si) und T+-(Re) attacks. For the relatively small K+ ion, the steric interaction between the beta substituent and the hydroperoxide I dominate. Consequently, the T+-(Si) attack is preferred, in which the hydrogen atom on the stereogenic center of the hydroperoxide is oriented towards the enone II. However, in the case of the DBU base, the more severe steric interaction occurs between the DBU-H+ and the hydroperoxide anion, which leads to the observed (Re)-face attack through the T+-(Re) structure. Thus, the best enantioselectivities are observed for sterically demanding beta substituents in the KOH-catalyzed case, while a large organic base like DBU is advantageous in the amine-mediated epoxidation. The validity of the proposed template structure is tested by further variation of the reaction conditions, both for the KOH- and the DBU-mediated asymmetric epoxidations. If the template cannot be formed through coordination, i.e., the K+ ion is sequestered by the 18-crown-6 ether, or a non-coordinating Schwesinger base is used instead of DBU, substantially lower enatioselectivities result. Furthermore, the fact that the S-cis conformation of the enone functionality is essential for the effective enantiofacial discrimination in the DBU- and the KOH-mediated reactions is indicative for the template structures in Figure A. Thus, the S-cis-fixed enone IIb gives rise to a higher enantioselectivity (up to 90 per cent ee) than the corresponding acyclic substrate, whereas the S-trans-fixed substrate IIc is poorly and unselectively (<5 per cent ee) converted. Conclusion: The asymmetric Weitz-Scheffer epoxidation of the enones II with the optically active hydroperoxides I, catalyzed by KOH or DBU, affords either the (alphaS,betaR)-epoxide III (up to 90 per cent ee) or the (alphaR,betaS)-epoxide (up to 72 per cent ee). As rationale for the fact that the desired enantiomer may be expressed merely by the choice of the base, a template is proposed, composed of the enone II, the hydroperoxide I, and the cation K+ or DBUH+. 2. The Weitz-Scheffer epoxidation with the optically active chinconine-derived phase-transfer catalyst (PTC) IV is explored as a means for the kinetic resolution of chiral hydroperoxides I. Although the kinetic resolution is ineffective and yields the optically active (S)-hydroperoxide Ia (Scheme B) in ee values of only up to 33 per cent, the isoflavone Scheme B: Kinetic Resolution of the Chiral Hydroperoxide I by Means of the Weitz-Scheffer Epoxidation with the Optically Active PTK IV epoxides VI are obtained as valuable “side products” in up to 92 per cent ee. On this basis, a method for the asymmetric epoxidation of the isoflavones V (Scheme C) has been developed in which Schema C: Enantioselectivities for the Epoxidation of the Enones IIb,c and the Isoflavone Vb in the Presence of the PTC IV the commercially available cumyl hydroperoxide has been utilized. The isoflavone Vb is converted to the (1aR,7aS)-epoxide VIb in 98 per cent ee. The high enantioselectivities are rationalized in terms of the template A (Scheme D), in which a hydrogen bond is postulated Schema D: Hydrogen-Bonded Template Structures A and B for the coordination the hydroxy functionality in the PTC IV to the endocyclic ether oxygen atom in the isoflavone V. The necessity of such a hydrogen bond is demonstrated by methylation of the hydroxy functionality in the PTC IV, which diminishes the enantioselectivity dramatically. Moreover, the significance of the ether oxygen atom in the isoflavone IV is substantiated by the scant enantioselectivity (18 per cent ee) observed in the epoxidation of the conformationally similar enone IIc. For the highly enantioselective epoxidation (95 per cent ee) of the S-cis-fixed enone IIb, an analogous hydrogen bond is proposed, to extend from the hydroxy group of the PTC IV to the carbonyl functionality of the enone (template B, Scheme D). Conclusion: In the asymmetric Weitz-Scheffer epoxidation, the optically active phase-transfer catalyst IV derived from cinchonine alkaloid has been employed to prepare essentially enantiomerically pure epoxides (up to 98 per cent). A hydrogen bond between the PTC IV and the substrate I or V is found to be essential for effective enantiofacial differentiation. The Weitz-Scheffer epoxidation proves to be ineffective for kinetic resolution of the racemic hydroperoxides I;
47

Stereospezifische Synthese von Ter- und Quartercyclohexyl-Systemen mit mesomorphen Eigenschaften /

Wolter, Herbert. January 1985 (has links)
University, Diss.--Paderborn, 1985.
48

Peptoide als Peptidomimetica Synthese, Struktur- und Aktivitätsuntersuchungen

Fritz, Daniel January 2009 (has links)
Zugl.: Karlsruhe, Univ., Diss., 2009
49

Synthese enantiomerenreiner BINOL-Liganden zur Darstellung helicaler mehrkerniger Metallkomplexe

Bunzen, Jens January 2009 (has links)
Zugl.: Bonn, Univ., Diss., 2009
50

Asymmetrische Streckersynthese von 2,4-Ethanothreoninen und 2,3-Propanoglutaminsäuren /

Meyer, Udo. January 2003 (has links)
Thesis (doctoral)--Albert-Ludwigs-Universität Freiburg im Breisgau, 2003.

Page generated in 0.2083 seconds