• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CONVERTING ASYNCHRONOUS DATA INTO A STANDARD IRIG TELEMETRY FORMAT

Peart, David E., Talbert, Jim 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / In recent years we have seen an increase in the use of MIL-STD-1553 buses and other asynchronous data sources used in new missile and launcher designs. The application of multiplexed asynchronous buses in missiles and launchers is very common today. With increasing application of asynchronous data sources into very complex systems the need to acquire, analyze, and present one hundred percent of the bus traffic in real time or near real time has become especially important during testing and diagnostic operations. This paper discusses ways of converting asynchronous data, including MIL-STD-1553, into a telemetry format that is suitable for encryption, telemetering, recording, and presenting with Inter Range Instrumentation Group (IRIG) compatible off-the-shelf hardware. The importance of these designs is to provide the capability to conserve data bandwidth and to maximize the use of existing hardware. In addition, this paper will discuss a unique decode and time tagging design that conserves data storage when compared to the methods in IRIG Standard 106-96 and still maintains a very accurate time tag.
2

View-Dependent Visualization for Analysis of Large Datasets

Overby, Derek Robert 2011 December 1900 (has links)
Due to the impressive capabilities of human visual processing, interactive visualization methods have become essential tools for scientists to explore and analyze large, complex datasets. However, traditional approaches do not account for the increased size or latency of data retrieval when interacting with these often remote datasets. In this dissertation, I discuss two novel design paradigms, based on accepted models of the information visualization process and graphics hardware pipeline, that are appropriate for interactive visualization of large remote datasets. In particular, I discuss novel solutions aimed at improving the performance of interactive visualization systems when working with large numeric datasets and large terrain (elevation and imagery) datasets by using data reduction and asynchronous retrieval of view-prioritized data, respectively. First I present a modified version of the standard information visualization model that accounts for the challenges presented by interacting with large, remote datasets. I also provide the details of a software framework implemented using this model and discuss several different visualization applications developed within this framework. Next I present a novel technique for leveraging the hardware graphics pipeline to provide asynchronous, view-prioritized data retrieval to support interactive visualization of remote terrain data. I provide the results of statistical analysis of performance metrics to demonstrate the effectiveness of this approach. Finally I present the details of two novel visualization techniques, and the results of evaluating these systems using controlled user studies and expert evaluation. The results of these qualitative and quantitative evaluation mechanisms demonstrate improved visual analysis task performance for large numeric datasets.
3

Robust Multichannel Functional-Data-Analysis Methods for Data Recovery in Complex Systems

Sun, Jian 01 December 2011 (has links)
In recent years, Condition Monitoring (CM), which can be performed via several sensor channels, has been recognized as an effective paradigm for failure prevention of operational equipment or processes. However, the complexity caused by asynchronous data collection with different and/or time-varying sampling/transmission rates has long been a hindrance in the effective use of multichannel data in constructing empirical models. The problem becomes more challenging when sensor readings are incomplete. Traditional sensor data recovery techniques are often prohibited in asynchronous CM environments, not to mention sparse datasets. The proposed Functional Principal Component Analysis (FPCA) methodologies, e.g., nonparametric FPC model and semi-parametric functional regression model, provide new sensor data recovery techniques to improve the reliability and robustness of multichannel CM systems. Based on the FPCA results obtained from historical asynchronous data, the deviation from the smoothing trajectory of each sensor signal can be described by a set of unit-specific model parameters. Furthermore, the relationships among these sensor signals can be identified and used to construct regression models for the correlated signals. For real-time or online implementation, use of these models along with the parameters adjusted by real-time CM data become powerful tools for dealing with asynchronous CM data while recovering lost data when needed. To improve the robustness and predictability in dealing with asynchronous data, which may be skewed in probability distribution, robust methods were developed based on Functional Data Analysis (FDA) and Local Quantile Regression (LQR) models. Case studies examining turbofan aircraft engines and an experimental two-tank flow-control loop are used to demonstrate the effectiveness and adaptability of the proposed sensor data recovery techniques. The proposed methods may also find a variety of applications in systems of other industries, such as nuclear power plants, wind turbines, railway systems, economic fields, etc., which may face asynchronous sampling and/or missing data collection problems.

Page generated in 0.0739 seconds