• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect Of Inner Scale Atmospheric Spectrum Models On Scintillation In All Optical Turbulence Regimes

Mayer, Kenneth 01 January 2007 (has links)
Experimental studies have shown that a "bump" occurs in the atmospheric spectrum just prior to turbulence cell dissipation.1,3,4 In weak optical turbulence, this bump affects calculated scintillation. The purpose of this thesis was to determine if a "non-bump" atmospheric power spectrum can be used to model scintillation for plane waves and spherical waves in moderate to strong optical turbulence regimes. Scintillation expressions were developed from an "effective" von Karman spectrum using an approach similar to that used by Andrews et al.8,14,15 in developing expressions from an "effective" modified (bump) spectrum. The effective spectrum extends the Rytov approximation into all optical turbulence regimes using filter functions to eliminate mid-range turbulent cell size effects to the scintillation index. Filter cutoffs were established by matching to known weak and saturated scintillation results. The resulting new expressions track those derived from the effective bump spectrum fairly closely. In extremely strong turbulence, differences are minimal.

Page generated in 0.096 seconds