• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 133
  • 19
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 207
  • 207
  • 36
  • 34
  • 31
  • 27
  • 25
  • 25
  • 22
  • 18
  • 16
  • 16
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Measurement of clear-air temperature and velocity spectra and cross spectra and of C²T with two hot-wire anemometers /

Shaari, Wanis A. January 1984 (has links)
No description available.
42

Optical wave propagation through non-Kolmogorov atmospheric turbulence

Liptack, Paul Anthony 01 January 2004 (has links) (PDF)
The effect of atmospheric turbulence on an optical wave can seriously degrade the reliability of an optical communication link. One atmospheric effect is scintillation, which is caused by index of refraction fluctuations. Several observations of atmospheric turbulence statistics suggest a modest change in the power law behavior of Kolmogorov' s power spectral density model. The corresponding index of refraction fluctuations are assumed to have spatial power spectra that obey power laws that deviate somewhat from the classical - 11/3 power law. The purpose of this study is to develop analytical models for scintillation and other wave propagation statistics based on non-classical power spectra. This involves random processes, asymptotic theory, and evaluating integrals involving special functions (Bessel functions and hypergeometric functions). Mean irradiance and scintillation index models are derived for a Gaussian-beam wave propagating through an atmosphere experiencing weak irradiance fluctuations. Also, the wave structure function for an unbounded plane wave and spherical wave is derived under weak turbulence theory. Using the derived plane wave structure function, the scintillation index for both a plane and spherical wave experiencing strong irradiance fluctuations is calculated. In addition, a scintillation model that is valid under all irradiance fluctuation conditions is derived for both a plane and spherical wave propagating through non-Kolmogorov atmospheric turbulence.
43

Coherent vortical structures in the atmospheric boundary layer near ground

Cropley, Ford January 1990 (has links)
No description available.
44

EFFECT OF AIRFOIL MEAN LOADING ON HIGH-FREQUENCY GUST INTERACTION NOISE (AEROACOUSTICS, FAN, TURBOMACHINERY).

MYERS, MATTHEW RONALD. January 1987 (has links)
This dissertation investigates the effect of airfoil steady loading on the sound generated by the interaction of an isolated, zero-thickness airfoil with a high-frequency convected disturbance. The analysis is based on a linearization of the inviscid equations of motion about a nonuniform mean flow. The mean flow is assumed to be two-dimensional and subsonic. Throughout most of the dissertation, we assume that the Mach number is 0(1), though in one section we concentrate on the leading-edge region and study the behavior of the sound field as the Mach number tends to zero. The small parameter representing the amount of airfoil camber and incidence angle, and the large parameter representing the ratio of airfoil chord to disturbance wavelength, are utilized in a singular perturbation analysis. The analysis shows that essentially all of the sound is generated at the leading and trailing edges, in regions the size of the disturbance wavelength. The solution in the local-leading-edge region reveals several sound-generating mechanisms which do not exist for an airfoil with no mean loading. These mechanisms are not present at the trailing edge; the trailing edge is important only as a scatterer of the sound produced at the leading edge. The propagation of sound away from the airfoil edges is described by geometric acoustics, with the amplitude varying on the scale of the airfoil chord and the phase varying on the much smaller scale of the disturbance wavelength. In addition, a diffraction-type transition region exists downstream of the airfoil. Calculations of radiated acoustic power show that the sound field depends strongly on Mach number, gust characteristics, and airfoil steady loading. Small changes in these properties can produce large changes in radiated power levels. Most importantly, we find that the amount of power radiated correlates very well with the strength of the mean flow around the leading edge.
45

Turbulence structure within an inclined laboratory convection tank

Nance, Jon D. 09 February 1989 (has links)
A baroclinic, convective mixed-layer was modeled, using water, in a laboratory convection tank identical to that used in the free convection study of Deardorff and Willis (1985). Baroclinicity and mean-flow shearing were achieved by tilting the tank by an angle of 1O⁰. The resulting mechanical-production rate of turbulence kinetic energy was comparable in magnitude to the buoyancy-production rate at mid-levels within the mixed-layer. Velocities were obtained by taking time-lapse photographs of neutrally-buoyant oil droplets suspended in the mixed-layer fluid. Variances and other statistical descriptors of the turbulence obtained from these velocities are presented in comparison to the free convection results of Deardorff and Willis (1985). The deviation of the present results from those of Deardorff and Willis (1985) are assumed to be related to the effects of mean-flow shearing and are explained wherever possible with the aid of an appropriate kinetic energy budget (kinetic energy, here, refers to the kinetic energy of the turbulence and is not to be confused with the kinetic energy of the mean-flow). The results indicate that a maximum in downstream horizontal kinetic energy at mid-levels within the mixed layer was generated by shear-production and, also, by conversion from vertical kinetic energy. In the lower mixed-layer, vertical kinetic energy was amplified by a mechanical-production term associated with the divergence of the mean vertical velocity. Total turbulence kinetic energy, normalized by the square of the convective velocity scale, was much larger at mid-levels than in Deardorff and Willis (1985) due to mechanical-production which is not accounted for by simple mixed-layer scaling. Horizontal turbulence structure was predominately controlled by convection while vertical turbulence structure was significantly altered by mean-flow shearing. / Graduation date: 1989
46

Turbulent structure in the bora and stable boundary layer

Frank, Helmut P. 03 April 1986 (has links)
An eigenvector analysis of the velocity-temperature correlation matrix is applied to clear-air turbulence measured by aircraft in the Bora. The eigenvectors are identified with the main eddies of the turbulence. This study attempts to infer the three-dimensional structure of these eddies. The results are compared with turbulent structures in the stable boundary layer. The turbulence in the strongly stratified boundary layer appears to be dominated by double roller eddies with their axes of rotation tilted in the shear direction. The clear-air turbulence shows a larger variety of motion types. / Graduation date: 1986
47

Turbulence and Mass-Transports in Stratocumulus Clouds

Ghate, Virendra Prakash 23 June 2009 (has links)
Boundary layer (BL) stratocumulus clouds are an important factor in the earth's radiation budget due to their high albedo and low cloud top heights. Continental BL stratocumulus clouds are closely coupled to the diurnal cycle and the turbulence in the BL affecting the surface energy and moisture budgets. In this study the turbulence and mass-transport structures in continental BL stratocumulus clouds are studied using data from the Atmospheric Radiation Measurements (ARM)'s Southern Great Plains (SGP) observing facility located at Lamont, Oklahoma. High temporal (4 sec) and spatial (45 m) resolution observations from a vertically pointing 35 GHz cloud Doppler radar were used to obtain the in-cloud vertical velocity probability density function (pdf) in the absence of precipitation size hydrometeors. A total of 70 hours of radar data were analyzed to report halfhourly statistics of vertical velocity variance, skewness, updraft fraction, downdraft and velocity binned mass-flux at five cloud depth normalized levels. The variance showed a general decrease with increase in height in the cloud layer while the skewness is weakly positive in the cloud layer and negative near cloud top. The updraft fraction decreases with height with the decrease mainly occurring in the upper half of the cloud layer. The downdraft fraction increases with decrease in height with the increase being almost linear. The velocity of eddies responsible for maximum mass-transport decreases from of 0.4 ms-1 near cloud base to 0.2 ms-1 near cloud top. The half-hour periods were then classified based on the surface buoyancy flux as stable or unstable and it was found that the variance near cloud top is higher during the stable periods as compared to the unstable periods. Classification was also made based on the cloud depth to BL depth ratio (CBR) being greater or less than 0.3. The variance profile was similar for the classification while the skewness was almost zero during periods with CBR less 0.3 and positive during periods with CBR greater than 0.3. A 14 hour period of stratocumulus cloud on March 25, 2005 was analyzed to study the diurnal changes in the turbulence structure and mass transports. The variance near cloud base during the day time when the BL turbulence is primarily due to surface buoyancy production was higher than during the nighttime when the BL turbulence is driven by radiative cooling near the cloud top. Output from a one dimensional radiative transfer model was analyzed to study the vertical structure of the radiative fluxes. A radiative velocity scale analogous to the surface convective velocity scale is proposed to assess the relative importance of radiative cooling near cloud top in generating turbulence compared with the surface buoyancy production. An attempt was also made to calculate the hourly liquid water flux by combining the high temporal resolution (20 sec) liquid water content estimates from the radar reflectivity and a microwave radiometer with the radar observed vertical velocity. The liquid water flux was found to peak at a level below the cloud top and show a divergence with height that was similar to that from model simulations.
48

Photon counting receivers for optical communication through the turbulent atmosphere /

Shanmuganathan, Kaliappan. January 1980 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1980.
49

Short term statistics of atmospheric turbulence and optical propagation /

Pincus, Philip A. January 1976 (has links)
Thesis (Ph. D.)--Oregon Graduate Center, 1976.
50

Atmospheric boundary-layer flow over topography data analysis and representations of topography /

Mengesha, Yoseph Gebrekidan. January 1999 (has links)
Thesis (M. Sc.)--York University, 1999. Graduate Programme in Earth and Space Science. / Typescript. Includes bibliographical references (leaves 138-141). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ39212.

Page generated in 0.0743 seconds