• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 14
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The diffraction of atoms by light

O'Dell, Duncan H. J. January 1998 (has links)
No description available.
2

Retro-reflection of cold rubidium atoms from a curved magnetic mirror

Barton, Paul Anthony January 1998 (has links)
No description available.
3

Tune-out Wavelength Measurement and Gyroscope Using Dispersion Compensation in an Atom Interferometer

Trubko, Raisa, Trubko, Raisa January 2017 (has links)
This Dissertation describes how I used a three nanograting Mach-Zehnder atom beam interferometer to precisely measure a wavelength of light, known as a tune-out wavelength, that causes zero energy shift for an atom. I also describe how such measurements can be remarkably sensitive to rotation rates. It is well known that atom interferometry can be used to measure accelerations and rotations, but it was a surprise to find out that tune-out wavelength measurements can under certain conditions be used to report the absolute rotation rate of the laboratory with respect to an inertial frame of reference. I also describe how we created conditions which improve the accuracy of tune out wavelength measurements. These measurements are important because they serve as a benchmark test for atomic structure calculations of line strengths, oscillator strengths, and dipole matrix elements. I present a new measurement of the longest tune-out wavelength in potassium, λzero = 768.9701(4) nm. To reach sub-picometer precision, an optical cavity surrounding the atom beam paths of the interferometer was used. Although this improved the precision of our experiment by increasing the light-induced phase shifts, the cavity also brought several systematic errors to our attentions. For example, I found that large ±200 pm shifts in tune-out wavelengths can occur due to the Earth's rotation rate. To solve this problem, I demonstrated that controlling the optical polarization, the magnetic field, and the atom beam velocity distribution can either suppress or enhance these systematic shifts. Suppressing these systemic shifts in tune-out wavelengths is useful for precision measurements used to test atomic structure calculations. By enhancing these systematic shifts, the interferometer can be a gyroscope that utilizes tune-out wavelengths.
4

ATOM OPTICS, CORE ELECTRONS, AND THE VAN DER WAALS POTENTIAL

Lonij, Vincent P. A. January 2011 (has links)
This dissertation describes new measurements of the van der Waals (vdW) potential energy for atoms near a surface. The measurements presented here were accomplished by studying diffraction a beam of atoms transmitted through a nanograting. I will describe how we improved precision by a factor of 10 over previous diffraction measurements by studying how different types of atoms interact with the same surface. As a result of this new precision, we were able to show for the first time the contribution of atomic core electrons to the atom-surface potential, and experimentally test different atomic structure calculation methods.In addition, this dissertation will describe how changing the width of the grating bars to achieve a particular "magic" grating bar width or rotating a grating to a particular "magic" angle allows us to determine both the atom-surface potential strength and the geometry of the grating. This represents an improvement over several recent studies where uncertainties in the nanograting geometry limited precision in the measurements of the vdW potential.For a complementary measurement, also discussed in this dissertation, we collaborated with the Vigue group in Toulouse, France. In this collaboration we used an atom interferometer to measure the phase shift due to transmission through a nanograting. By combining diffraction data from Tucson with interferometry data from Toulouse we improved the precision of interferometry measurements of the atom-surface potential of a single atomic species by almost a factor of 10 over previous interferometric measurements of the vdW potential. These interferometry measurements also serve to measure the shape of the vdW potential and set a limit on non-Newtonian gravitational interactions at 1-2 nm length scales.Finally, this dissertation will discuss how nanogratings with optimized geometry can improve atom interferometers, for example, with blazed gratings. We discuss next generation atom-surface potential measurements and examine new ways of analyzing diffraction data.
5

EXPERIMENTS WITH A METASTABLE HELIUM ATOMIC TRAP

Colla, Massimiliano, Max.Colla@anu.edu.au January 2006 (has links)
In this work I report on the development of a Magneto Optic Trap (MOT) for metastable helium atoms (He*). The metastable helium atoms are produced in a discharge nozzle source and collimated, slowed and compressed to provide a slow bright beam for loading the trap. The trap confines approximately 107 atoms, has a diameter of about 3 mm and with temperature approximately 1 mK. The trap is used for intra-trap and electron-atom scattering experiments. The results from these two experiments are reported. The electron scattering experiment is unique and employs a He* MOT for the first time, in combination with a new diagnostic technique (Phase Modulation Spectroscopy) to measure the trap loss. The results of these experiments have yielded the first total electron-metastable atom collision cross section measurements at intermediate (10-100 eV) electron energies.
6

Using Atom Optics to Measure van der Waals Atom-Surface Interactions

Perreault, John D. January 2005 (has links)
Atom-surface interactions are becoming an integral part of the field of atom optics. Here the role of van der Waals atom-surface interactions in atom wave diffraction and interferometry are investigated. In particular, it is shown that van der Waals interactions influence the intensity and phase of atomic diffraction patterns obtained from material gratings. As a result the atomic diffraction patterns are utilized to make an accurate determination of the interaction strength and verify the spatial variation of the atom-surface potential. A theory for describing the modified atom wave diffraction patterns is developed through an analogy with optical waves. An atom interferometer is used to directly measure the de Broglie wave phase shift induced by atom-surface interactions. More specifically, the phases of the zeroth, first, and second diffraction orders are measured. A proposal for using electromagnetic fields to modify the van der Waals interaction is put forth. Several of the important experimental components for observing such an effect are also demonstrated.
7

Atom detection and counting in ultracold gases using photoionisation and ion detection

Tom Campey Unknown Date (has links)
No description available.
8

Atom detection and counting in ultracold gases using photoionisation and ion detection

Tom Campey Unknown Date (has links)
No description available.
9

Open Quantum Dynamics of Mesoscopic Bose-Einstein Condensates

Corney, Joel Frederick Unknown Date (has links)
The properties of an atomic Bose-Einstein condensate in a double-well potential are investigated through a two-mode analysis. An analytic solution for the semiclassical tunnelling and self-trapping dynamics is compared with numerical simulations of the quantum dynamics, which exhibit collapses and revivals for a closed system. A continuous non-destructive measurement technique to monitor the Josephson tunnelling oscillations is presented, in which the condensate in one well dispersively shifts the phase of a coherent probe beam in proportion to atom-number. The evolution of the resulting homodyne photocurrent and Bloch Q distributions shows that oscillations develop even when the initial state possesses phase symmetry. The conditional dynamics of the condensate which result from measurement back-action also appear in certain semiclassical formulations. The homodyne measurement technique is incorporated into a proposed weak-force detector. A maximally entangled initial state, which is the ground state for a double condensate with strong attractive atomic interactions, enables a high-precision measurement. The dynamics of quantum many-body multimode systems of interacting bosons are simulated using phase-space methods. The use of the Wigner technique predicts novel noise effects in fibre solitons. The positive-P representation is used to simulate the formation of mesoscopic Bose-Einstein condensates via evaporative cooling in three dimensional atom traps. The results indicate highly non-classical behaviour near the critical point, and provide evidence for the spontaneous formation of vortices. Comparisons with corresponding mean-field calculations reveal large differences between the semiclassical and fully quantum results. Finally, the possibility of future progress with alternative phase-space methods is considered.
10

Teoria de detecção homódina atômica em condensados de Bose-Einstein / Atomic homodyne detection theory on Bose-Einstein condensates

Cunha, Bruno Requião da 03 June 2006 (has links)
Orientador: Marcos Cesar de Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-05T23:55:30Z (GMT). No. of bitstreams: 1 Cunha_BrunoRequiaoda_M.pdf: 982455 bytes, checksum: 6b90a96795f82ed70b0616d6c5af1800 (MD5) Previous issue date: 2006 / Resumo: Óptica atômica e em particular a física de ondas de matéria ultrafrias tiveram um grande desenvolvimento teórico e experimental em muito devido à realização experimental da condensação de Bose-Einstein em vapores atômicos. A gama de interesse nesses sistemas é muito ampla já que eles proporcionam reais aplicações práticas de assuntos inovadores em física fundamental de sistemas de muitos corpos com parâmetros altamente controláveis e até mesmo na implementação de computação quântica, teleporte e lasers atômicos. Com efeito, demonstramos numa formulação completamente quântica que a colisão cruzada entre átomos aprisionados num potencial de poço duplo pode aumentar significativamente a taxa de tunelamento atômico em configurações específicas da armadilha, levando a um regime de oscilação Rabi da população dos poços do potencial. Ainda, mostramos que os fenômenos de colapso e ressurgimento do condensado são suprimidos devido à competição entre autocolisão e colisão cruzada intermediada pelo tunelamento. Um aspecto da condensação de Bose-Einstein que tem atraído muita discussão teórica é a idéia de fase. Nesse sentido, o modelo de poço duplo aqui discutido pode resultar em condições ideais para esquemas de detecção homódina atômica de fase. Propomos uma técnica de medição não destrutiva para monitorar oscilações do tipo Josephson entre dois condensados de Bose-Einstein de átomos neutros espacialmente separados. Um condensado é disposto em uma cavidade óptica, fortemente dirigida por um campo coerente. O sinal de saída é monitorado lançando-se mão de um esquema de detecção homódina balanceada. O campo da cavidade é escolhido de forma que esteja muito fora de sintonia com quaisquer transições atômicas. Assim, esse campo ganha uma fase proporcional ao número de átomos na cavidade devido à interação dispersiva entre os campos atômico e fotônico. A corrente detectada é então modulada pela corrente de oscilação devida ao tunelamento dos modos condensados. De fato, mesmo quando ambos os poços estão igualmente populados, uma fase é estabelecida pelo processo de medição e oscilações do tipo Josephson acabam ocorrendo. Nesse contexto, mostramos que a presença de colisão cruzada aprimora as condições necessárias para se adquirir informações sobre a fase quântica relativa de um condensado de Bose-Einstein num potencial de poço duplo / Abstract: Recently, atom optics and the physics of ultracold matter waves have witnessed rapid theoretical and experimental progress due to the achievement of atomic vapor Bose-Einstein condensation (BEC). The interest in such systems is quite wide ranged since it opens new applicative frontiers such as investigations on fundamental many-body physics in model systems with highly controllable parameters and even quantum computation, teleportation and atom-lasers besides several other ground breaking subjects. Henceforth, we demonstrate in an exact quantum formulation that cross-collisions between atoms trapped in a double well can significantly increase the atom tunnelling rate for special trap configurations leading to an effective linear Rabi regime of population oscillation between the trap wells. Typical collapse and revival of the condensate are suppressed as well as due to cross- and self-collision competition intermediated by tunnelling. One aspect of BECs that has attracted much theoretical work is the idea of phase. In this sense if we face this double-well BEC model as a temporal atomic beam splitter it may result in optimal conditions for homodyne atomic detection schemes. A nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates is investigated. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from any atomic resonance and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunnelling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop. Hence we show that the presence of cross-collisions enhances the possibility of acquiring information about the relative quantum phase of a double-well Bose-Einstein condensate / Mestrado / Física da Matéria Condensada / Mestre em Física

Page generated in 0.0379 seconds