• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influência da fase de crescimento celular na ação fotodinâmica: avaliação morfológica, mecânica e bioquímica, em células de Candida albicans / Influence of the cell growth phase on photodynamic action: morphological, mechanical and biochemical evaluation in cells of Candida albicans

Baptista, Alessandra 24 November 2015 (has links)
Estudos têm demonstrado o potencial da terapia fotodinâmica antimicrobiana (aPDT) na inativação de diferentes células microbianas. No geral, são três as fases de crescimento dos microrganismos: fase lag, exponencial e estacionária. Os objetivos deste estudo foram avaliar a susceptibilidade de células de Candida albicans em diferentes fases de crescimento, submetidas à aPDT, associando azul de metileno (50 μM) e luz de emissão vermelha (λ= 660 nm) e investigar alterações morfológicas, mecânicas e bioquímicas, antes e depois da aPDT, por microscopia eletrônica de varredura, de força atômica e por espectroscopia no infravermelho por transformada de Fourier. Os resultados obtidos sugerem que, em parâmetros letais, células em fase estacionária de crescimento (48 h) são menos susceptíveis à aPDT, quando comparadas àquelas em fases lag (6 h) e ex-ponencial (24 h) de crescimento. Entretanto, em parâmetros subletais, células de 6 h e 48 h mostraram a mesma susceptibilidade à aPDT. Em sequência, os experimentos foram realizados em parâmetros considerados subletais para células crescidas por 6 e 48 h. A avaliação morfológica mostrou menor quantidade de matriz extracelular em células de 6 h comparada àquelas de 48 h. A espectroscopia de força atômica mostrou que células em fase lag perderam a rigidez após a aPDT, enquanto que células em fase estacionária mostraram comportamento in-verso. Ainda, células de 48 h diminuíram sua adesividade após a aPDT, enquanto que células de 6 h e 24 h tornaram-se mais adesivas. Os resultados bioquímicos revelaram que as diferenças mais significativas entre as células fúngicas de 6 h e 48 h ocorreram na região de DNA e carboidratos. A aPDT promoveu mais alterações bioquímicas na região de DNA e carboidratos em células de 6 h e em lipídios e ácidos graxos em células de 48 h. Nossos resultados indicam que a fase de crescimento celular desempenha papel importante no sítio de ação da aPDT em células de C. albicans. / Studies have demonstrated the potential of antimicrobial photodynamic therapy (aPDT) on the inactivation of different microbial cells. Overall, there are three phases of cell growth: lag phase, exponential phase and stationary phase. The objectives of this study were to evaluate the susceptibility of Candida albicans in different growth stages submitted to aPDT, with methylene blue (50μM) and red light (λ = 660 nm) and to investigate morphological, mechanical and biochemical changes before and after aPDT, by scanning electron microscopy, atomic force microscopy and by Fourier transform infrared spectroscopy. The results suggested that with lethal parameters, cells in stationary phase (48 h) are less susceptible to aPDT, compared to those in lag phase (6 h) and exponential phase (24 h). However, in sub-lethal parameters 6 h and 48 h cells showed the same susceptibility to aPDT. The following results were obtained in sub-lethal parameters. The morphological evaluation showed lower amount of extra-cellular matrix at 6 h compared to cells growth for 48 h. The atomic force spectroscopy showed that cells in lag phase lost cell wall rigidity after aPDT, while cells in stationary phase showed a reverse behavior. Furthermore, 48 h cells presented a decrease in their adhesiveness after aPDT, whereas cells growth for 6 h and 24 h become more adhesive. The biochemical evaluation showed that the most significant differences among the fungal cells growth for 6 h and 48 h in DNA and carbohydrates. The aPDT caused more expressive alterations on DNA and carbohydrates in cells growth for 6 h, while cells growth for 48 h presented significant alterations on lipids and fatty acids. Our results indicate that cell growth phase play an important role on the target sites affected by aPDT in C. albicans cells.
2

Influência da fase de crescimento celular na ação fotodinâmica: avaliação morfológica, mecânica e bioquímica, em células de Candida albicans / Influence of the cell growth phase on photodynamic action: morphological, mechanical and biochemical evaluation in cells of Candida albicans

Alessandra Baptista 24 November 2015 (has links)
Estudos têm demonstrado o potencial da terapia fotodinâmica antimicrobiana (aPDT) na inativação de diferentes células microbianas. No geral, são três as fases de crescimento dos microrganismos: fase lag, exponencial e estacionária. Os objetivos deste estudo foram avaliar a susceptibilidade de células de Candida albicans em diferentes fases de crescimento, submetidas à aPDT, associando azul de metileno (50 μM) e luz de emissão vermelha (λ= 660 nm) e investigar alterações morfológicas, mecânicas e bioquímicas, antes e depois da aPDT, por microscopia eletrônica de varredura, de força atômica e por espectroscopia no infravermelho por transformada de Fourier. Os resultados obtidos sugerem que, em parâmetros letais, células em fase estacionária de crescimento (48 h) são menos susceptíveis à aPDT, quando comparadas àquelas em fases lag (6 h) e ex-ponencial (24 h) de crescimento. Entretanto, em parâmetros subletais, células de 6 h e 48 h mostraram a mesma susceptibilidade à aPDT. Em sequência, os experimentos foram realizados em parâmetros considerados subletais para células crescidas por 6 e 48 h. A avaliação morfológica mostrou menor quantidade de matriz extracelular em células de 6 h comparada àquelas de 48 h. A espectroscopia de força atômica mostrou que células em fase lag perderam a rigidez após a aPDT, enquanto que células em fase estacionária mostraram comportamento in-verso. Ainda, células de 48 h diminuíram sua adesividade após a aPDT, enquanto que células de 6 h e 24 h tornaram-se mais adesivas. Os resultados bioquímicos revelaram que as diferenças mais significativas entre as células fúngicas de 6 h e 48 h ocorreram na região de DNA e carboidratos. A aPDT promoveu mais alterações bioquímicas na região de DNA e carboidratos em células de 6 h e em lipídios e ácidos graxos em células de 48 h. Nossos resultados indicam que a fase de crescimento celular desempenha papel importante no sítio de ação da aPDT em células de C. albicans. / Studies have demonstrated the potential of antimicrobial photodynamic therapy (aPDT) on the inactivation of different microbial cells. Overall, there are three phases of cell growth: lag phase, exponential phase and stationary phase. The objectives of this study were to evaluate the susceptibility of Candida albicans in different growth stages submitted to aPDT, with methylene blue (50μM) and red light (λ = 660 nm) and to investigate morphological, mechanical and biochemical changes before and after aPDT, by scanning electron microscopy, atomic force microscopy and by Fourier transform infrared spectroscopy. The results suggested that with lethal parameters, cells in stationary phase (48 h) are less susceptible to aPDT, compared to those in lag phase (6 h) and exponential phase (24 h). However, in sub-lethal parameters 6 h and 48 h cells showed the same susceptibility to aPDT. The following results were obtained in sub-lethal parameters. The morphological evaluation showed lower amount of extra-cellular matrix at 6 h compared to cells growth for 48 h. The atomic force spectroscopy showed that cells in lag phase lost cell wall rigidity after aPDT, while cells in stationary phase showed a reverse behavior. Furthermore, 48 h cells presented a decrease in their adhesiveness after aPDT, whereas cells growth for 6 h and 24 h become more adhesive. The biochemical evaluation showed that the most significant differences among the fungal cells growth for 6 h and 48 h in DNA and carbohydrates. The aPDT caused more expressive alterations on DNA and carbohydrates in cells growth for 6 h, while cells growth for 48 h presented significant alterations on lipids and fatty acids. Our results indicate that cell growth phase play an important role on the target sites affected by aPDT in C. albicans cells.
3

Understanding Structure And Growth Of Physisorbed Films : A Combined Atomic Force Microscopy And Modeling Study

Patil Kalyan, G 01 1900 (has links) (PDF)
Surface modification has wide ranging implications in lubrication, microelectromechanical systems (MEMS), colloidal systems and biological membranes. Surface modification plays an important role in stabilizing gold nanoparticles, which have applications in targeted drug delivery and catalysis. A variety of surface modification techniques are used for controlling corrosion and wettability, as well as used extensively to understand the nature of interactions between surfaces. This thesis is mainly focused on understanding the kinetics, film growth and surface modification by long chain molecules physisorbed on a surface. The time evolution of film growth and domain formation of octadecylamine on a mica surface is studied using ex-situ AFM and reflectance FTIR. A novel technique of interface creation is developed to measure the height of the adsorbed film. The results show three distinct regions of film growth mechanism. Region I, corresponds to thin film and the interface height is in the monolayer regime. The transient regime (II) consists of a sharp increase in the film thickness, from 1.5 nm to 25 nm within a time span of 180 s. In the final stage of film growth the film thickness is invariant with time, during which domain coarsening is observed. Domain evolution reveals a non-monotonic variation in the domain size as a function of adsorption time. A three stage mechanism is proposed to explain the domain evolution on the surface. In order to explain the observed film thickness variation, we have developed and tested various models to explain the thin to thick film transition observed in the AFM experiments. A model based on adsorption kinetics is solved to obtain the evolution of the adsorbed film. The model with a two-step adsorption isotherm quantitatively captures the thin to thick film transition observed in the AFM experiments. The statistical thermodynamics of adsorption of long chain molecules on a surface has been studied using a lattice model. The molecules are characterized by backbone chain, either lying parallel or perpendicular to the surface. A square lattice with nearest neighbour interactions and a mean field approximation are used to generate the adsorption isotherms for different molecules as a function of chain length. The molecules change their orientation from a surface parallel to an upright configuration with an increase in chemical potential. A similar transition (with time) in the molecular orientation has been observed in the AFM experiments. The transition between these two orientations is accompanied by an entropy maximum The last part of the thesis is concerned with carbon-carbon interactions. More specifically, we are interested in the interactions between graphite surfaces and their modification in the presence of a lubricant or base oil. Diamond like carbon (DLC) AFM tips and highly oriented pyrolitic graphite (HOPG) have been used for this study. Experiments were carried out by treating HOPG graphite in hexadecane oil at different temperatures. It is observed that pull-off forces on bare graphite are smaller when compared to the treated surface. The magnitude of the pull-off forces increases with the temperature of the hexadecane oil bath. Presence of charged patches responsible for the higher adhesion have been confirmed using surface potential microscopy. Results also confirm the presence of a thin liquid-like hexadecane film at room temperature.
4

Greffage de polymères biomimétiques sur implants articulaires en polyéthylène: contrôle du comportement tribologique

Wang, Na 15 April 2013 (has links) (PDF)
Les maladies ostéoarticulaires représentent environ 10% de l'ensemble des pathologies identifiées en France chaque année. Pour l'instant aucun traitement permettant la réparation du tissu cartilagineux n'est vraiment disponible, hormis la pose d'un implant articulaire. Mais, malgré de nombreux efforts pour développer de nouveaux matériaux pour les implants articulaires leur durée de vie in vivo s'avère souvent très décevante par rapport aux extrapolations faites à partir de simulations ex-vivo. Les discordances entre les durées de vie in vivo et ex vivo sont principalement imputées aux conditions d'essais ex vivo insuffisamment réalistes vis-à-vis des propriétés physico-chimiques des lubrifiants biologiques. Dans ce contexte, ce travail vise à agir sur la réactivité physicochimique des surfaces frottantes des implants articulaires en UHMWPE afin de maîtriser l'accrochage des molécules lubrifiantes de type phospholipidique et ainsi d'augmenter leurs performances tribologiques. Les résultats montre que l'activation physichochimique des surfaces de UHMWPE par des couche de MPC peut diminuer l'usure des surfaces polymères d'implant mais cela nécessite un contrôle de la qualité de la couche MPC greffée (densité surfacique, épaisseur, accrochage chimique, adsorption physico-chimique) afin de garantir une bonne tenue mécanique et tribologique. D'autre part il a été montré que la présence de lubrifiant biologique (substitut du fluide synovial à base de liposomes) réduit l'usure des surfaces de UHWPE même si la couche de MPC est peu dense et peu épaisse
5

Propriétés mécaniques et structurales d'encapsulants polymères utilisés en microélectronique : effet de la température et de l'humidité / Mechanical and structural properties of polymer encapsulants used in microelectronics : effect of temperature and humidity

Ayche, Kenza 26 January 2017 (has links)
L’engouement mondial pour les appareils nomades et la course à la sobriété énergétique font de la diminution de la taille des systèmes microélectroniques (MEMS) un enjeu majeur pour les prochaines années. Les micro batteries au lithium sont aujourd'hui le moyen le plus efficace pour stocker et alimenter des dispositifs avec une très forte densité énergétique. Les incorporer dans des cartes de crédit comportant un écran et des touches intégrés est l’un des défis que relèvent les multinationales comme ST Micro Electronics. Ces micro batteries contiennent cependant du lithium métallique qui peut s'avérer très dangereux quand il est en contact avec de l’eau ou de l’air humide. Ainsi, afin de protéger les composants à une exposition à l’humidité, une encapsulation de l’ensemble de la batterie est nécessaire. L'encapsulation polymère a l’avantage, comparativement à d’autres matériaux, de présenter un faible coût de mise en forme et un faible poids. Cependant, de tels systèmes d'encapsulation sont aujourd'hui insuffisants pour garantir une durée de vie de plusieurs années des composants car en présence d’humidité ou d’une variation de température importante la tenue mécanique des assemblages peut être fragilisée. L'objectif de la thèse est donc de réaliser et d'étudier le comportement mécanique et structural d’assemblage de couches minces de polymères et de métaux en température et en humidité. Deux types de polymères ont été choisis pour ce projet :1. Le chlorure de polyvinylidène (PVDC), un polymère commercial très utilisé pour ses bonnes propriétés barrières à l'eau 2. Un oligomère acrylate reticulable par voie thermique et UV synthétisé au sein de l'IMMM. / The increasing number of mobile devices and the race to energy sobriety make the decrease of the size of microelectronic systems (MEMS) a major challenge. Today, Lithium micro batteries are currently the best solution for high-power-and-energy applications. Incorporate them into credit cards containing a screen or associate them to electronic sensors for the supervision is the challenge which raises international companies such as ST Microelectronics. However, these micro batteries contain some lithium metal which can be dangerous if the metallic lithium is in contact with water or humid air. In addition, the substance can spontaneously ignite in the contact of the humidity. So, in order to avoid the problems of safety, we absolutely have to protect the lithium contained in our micro batteries using an encapsulation layer. Polymeric encapsulation has the advantage, compared with other materials (ceramic, metal), to present a moderate cost of shaping and a low weight. However, such systems of encapsulation are today insufficient to guarantee a satisfactory life cycle of components. Indeed, in the presence of humidity or of a too important temperature variation, the mechanical assemblies can be weakened and engender an irreparable break. The objective of the thesis is therefore to realize and study the mechanical and structural behavior of assembly of thin layers of polymers and metals in temperature and humidity.Two types of polymers were selected for this project:1. Polyvinylidene chloride (PVDC), a commercial polymer widely used for its good barrier properties to water.2. A thermally and UV-crosslinkable acrylate oligomer synthesized in the IMMM.

Page generated in 0.0748 seconds