291 |
Creation of entangled states of a set of atoms in an optical cavityHaas, Florian 13 February 2014 (has links) (PDF)
In this thesis, we demonstrate the creation and characterization of multiparticle entangled states of neutral atoms with the help of a high finesse cavity. Our experimental setup consists of a fibre-based high finesse cavity above the surface of an atom chip. It allows us to prepare an ensemble of 87Rb atoms with well-defined atom number. The atoms are trapped in a single antinode of an intracavity standing wave dipole trap and are therefore all equally coupled to the cavity mode. We present a scheme based on a collective, quantum non-destructive (QND) measurement and conditional evolution to create symmetric entangled states and to analyze them at the single-particle level by directly measuring their Husimi Q function. We use this method to create and characterize W states of up to 41 atoms. From the tomography curve of the Q function, we reconstruct the symmetric part of the density matrix via different reconstruction techniques and obtain a fidelity of 0.42. Furthermore, we have devised an entanglement criterion which only relies on comparing two populations of the density matrix. We use it to infer the degree of multiparticle entanglement in our experimentally created states and find that the state with highest fidelity contains at least 13 entangled particles. In addition, we show preliminary results on experiments to count the atom number inside a cavity in the QND regime and to create entangled states via quantum Zeno dynamics.
|
292 |
Computational properties of uranium-zirconiumMoore, Alexander Patrick 13 January 2014 (has links)
The metallic binary-alloy fuel Uranium-Zirconium is important for use in the new generation of advanced fast reactors. Uranium-Zirconium goes through a phase transition at higher temperatures to a (gamma) Body Centered Cubic (BCC) phase. The BCC high temperature phase is particularly important since it corresponds to the temperature range in which the fast reactors will operate. A semi-empirical Modified Embedded Atom Method (MEAM) potential is presented for Uranium-Zirconium. This is the first interatomic potential created for the U-Zr system. The bulk physical properties of the Uranium-Zirconium binary alloy were reproduced using Molecular Dynamics (MD) and Monte Carlo (MC) simulations with the MEAM potential. The simulation of bulk metallic alloy separation and ordering phenomena on the atomic scale using iterative MD and MC simulations with interatomic potentials has never been done before. These simulations will help the fundamental understanding of complex phenomena in the metallic fuels. This is a large step in making a computationally acceptable fuel performance code, able to replicate and predict fuel behavior.
|
293 |
Konfigūracijų 3s3pN+1 ir 3s23pN–13d maišymasis atomuose ir jo įtaka fotosužadinimo spektrams / Mixing of 3s3pN+1 and 3s23pN–13d configurations in atoms and its influence on the photoexcitation spectraRemeikaitė-Bakšienė, Lina 09 July 2010 (has links)
Šiame darbe, remiantis skaičiavimais kvazireliatyvistiniu dvikonfigūraciniu artiniu, atliktas vieno iš svarbių koreliacinių efektų atomuose – konfigūracijų 3s3pN+1 +3s23pN–13d maišymosi ir jo įtakos fotosužadinimo spektrams – teorinis tyrimas. Buvo nagrinėti sužadinimai iš pagrindinio lygmens, tai atitinka retą plazmą, būdingą astrofizikinių ir laboratorinių tyrimų objektą. Naudojantis Cowano programų kompleksu, atlikti banginių funkcijų, energijos ir fotosužadinimo spektrų skaičiavimai izoelektronėms sekoms esant įvairiam pN sluoksnio elektronų skaičiui, nuo pirmųjų jonų iki keturiasdešimt kartų jonizuotų atomų.
Fotosužadinimo spektrai, skaičiuoti vienkonfigūraciniu ir dvikonfigūraciniu artiniais, palyginti su pateiktais literatūroje tikslesnių pusiauempirinių skaičiavimų atsižvelgiant į didesnį konfigūracijų skaičių duomenimis, liudija, kad vienkonfigūraciniu artiniu gaunamas labai netikslus rezultatas. Tačiau dvikonfigūracinis artinys duoda kokybiškai ir net kiekybiškai teisingą vaizdą. Tai liudija, kad spektro struktūrą iš esmės lemia konfigūracijų su simetrišku simetrijos pasikeitimu maišymasis ir dvikonfigūracinis artinys yra pakankamas bendriems spektro dėsningumams tirti.
Pastebėta, kad intensyvumo pasiskirstymą fotosužadinimo spektruose lemia maišymasis tų lygmenų, į kuriuos galimas stiprus sužadinimas. Tie konfigūracijos 3s23pN–13d lygmenys visose izoelektronėse sekose turi didesnę energiją negu su jais besimaišantys atitinkami 3s3pN+1 lygmenys. Atsižvelgus į šių... [toliau žr. visą tekstą] / In this work the strong mixing of configurations 3s3pN+1 +3s23pN–13d and its influence on the photoexcitation spectra is investigated theoretically in quasirelativistic two-configuration approximation. The excitations from the ground level of 3s23pN configuration were considered, it corresponds to the plasma of low density – the important object of astrophysical and laboratory plasma. The calculations of wave functions, energy level and photoexcitation spectra were performed using Cowan code for isoelectronic sequences at various numbers of electrons in the pN shell from first ions till the ionization degree q = 40.
The photoexcitation spectra calculated in the single-configuration and two-configuration approximations have been compared with the semiempirical ones obtained using wider configuration basis. The single-configuration approximation gives very inaccurate result, but the two-configuration approximation describes fairly well the main features of spectrum. It indicates that the structure of considered photoexcitation spectra is mainly determined by the mixing of two configurations with symmetric exchange of symmetry and this approximation is satisfactory for the investigation of general regularities of spectra.
It is shown that the distribution of intensity in the photoexcitation spectra depends on the mixing of mainly populated excited levels. In all isoelectronic sequences such levels of 3s23pN–13d configuration are always lying above the mixed with them 3s3pN+1... [to full text]
|
294 |
Atomic transport in optical latticesHagman, Henning January 2010 (has links)
This thesis includes both experimental and theoretical investigations of fluctuation-induced transport phenomena, presented in a series of nine papers, by studies of the dynamics of cold atoms in dissipative optical lattices. With standard laser cooling techniques about 108 cesium atoms are accumulated, cooled to a few μK, and transferred into a dissipative optical lattice. An optical lattice is a periodic light-shift potential, and in dissipative optical lattice the light field is sufficiently close to resonance for incoherent light scattering to be of importance. This provides the system with a diffusive force, but also with a friction through laser cooling mechanisms. In the dissipative optical lattices the friction and the diffusive force will eventually reach a steady state. At steady state, the thermal energy is low enough, compared to the potential depth, for the atoms to be localized close to the potential minima, but high enough for the atoms to occasionally make inter-well flights. This leads to a Brownian motion of the atoms in the optical lattices. In the normal case these random walks average to zero, leading to a symmetric, isotropic diffusion of the atoms. If the optical lattices are tilted, the symmetry is broken and the diffusion will be biased. This leads to a fluctuation-induced drift of the atoms. In this thesis an investigation of such drifts, for an optical lattice tilted by the gravitational force, is presented. We show that even though the tilt over a potential period is small compared to the potential depth, it clearly affect the dynamics of the atoms, and despite the complex details of the system it can, to a good approximation, be described by the Langevin equation formalism for a particle in a periodic potential. The linear drifts give evidence of stop-and-go dynamics where the atoms escape the potential wells and travel over one or more wells before being recaptured. Brownian motors open the possibility of creating fluctuation-induced drifts in the absence of bias forces, if two requirements are fulfilled: the symmetry has to be broken and the system has to be brought out of thermal equilibrium. By utilizing two distinguishable optical lattices, with a relative spatial phase and unequal transfer rates between them, these requirements can be fulfilled. In this thesis, such a Brownian motor is realized, and drifts in arbitrary directions in 3D are demonstrated. We also demonstrate a real-time steering of the transport as well as drifts along pre-designed paths. Moreover, we present measurements and discussions of performance characteristics of the motor, and we show that the required asymmetry can be obtained in multiple ways.
|
295 |
Ultracold atoms in optical potentials : from noise-induced transport to superfluidityZelan, Martin January 2011 (has links)
In this thesis, both experimental studies and numerical simulations of ultracold atoms in optical potentials are presented in a collection of nine scientific papers. In particular, noise-induced transport in dissipative optical lattices and superfluid properties of Bose-Einstein condensates have been studied. Noise is usually regarded as a complication to most systems and as something that needs to be minimized. However, in a series of experiments at Umeå University, noise has been shown to play a key role for laser-cooled cesium atoms trapped in dissipative optical lattices. By using a combination of two dissipative optical lattices, where the relative spatial phase between them can be controlled, a so-called Brownian motor can be realized, where energy can be extracted from the inherent noise. In the experiment, this energy is used to control the transport of the laser-cooled atoms in real time and along pre-designed paths. This thesis also presents a way to characterize this system in terms of energy conversion efficiency and coherence of the transport, which may allow for a more straightforward comparison with other systems that rely on noise rectification. In the studies, it is also shown that the noise triggers a downward drift due to gravity, even though the optical potential should support the atoms. Further investigation of this might help to understand the underlying principles of laser cooling, as well as showing that the system might be suitable as a flexible test bed for statistical physics. In close relation to the experimental system, two numerical simulations are also presented, one in which different ways to induce asymmetries between two periodic potentials are investigated, and one in which a proposal for detecting quantum walks is explored. In the second part of the thesis, a work from the Joint Quantum Institute is presented, where a long-lived persistent current in a toroidal Bose-Einstein condensate, held in an all-optical trap, is created. The critical velocity of the superflow is measured in the presence of a tunable barrier. The system can be seen as a first realization of an elementary closed-loop atom circuit. Finally a theoretical study of the crossover between one- and two-dimensional systems is presented, in particular the transition between a two-dimensional superfluid to a one-dimensional Mott insulator is investigated. / Medelst nio vetenskapliga artiklar presenteras i denna avhandling experimentella och teoretiska studier av ultrakalla atomer fångade i optiska potentialer. Framförallt har brusinducerade transporter och supraytande egenskaper hos Bose-Einstein-kondensat studerats. För de flesta system betraktas brus som något negativt som bör minimeras, men i en serie experiment som redovisas i denna avhandling spelar bruset istället en avgörande positiv roll. I ett system där laserkylda atomer genom växelverkan med laserstrålar fångas i två individuella optiska kristallgitter, kan atomernas kollektiva rörelse styras genom att energi utvinns ur det inneboende bruset. I denna avhandling, genom att kontrollera de optiska potentialerna i realtid, visas att atomernas kollektiva rörelse kan styras längs förutbestämda banor med en så kallade Brownska motor. I ett annat experiment mäts verkningsgraden i omvandligen mellan brus och arbete, samt koherensen i atomtransporten. En sådan karakterisering gör att systemet blir enklare att jämföra med andra system som bygger på liknande principer. I avhandlingen presenteras också en studie där det visas att det inneboende bruset i systemet, tillsammans med en svag kraft, i detta fall från gravitation, kan skapa drifter trots att de optiska potentialerna borde vara tillräckligt djupa för att atomerna ska vara fångade. Denna upptäckt kan leda till ökad grundläggande kundskap om laserkylning. Dessutom visar det att systemet kan beskrivas med modeller från statistisk fysik. I relation till det experimentella systemet i Umeå redovisas även två teoretiska studier, en för två symmetriska periodiska potentialer och deras sätt att möjliggöra inducerade drifter med olika typ av asymmetrier, samt en annan för möjligheten att genomföra och detektera kvantvandringar. I avhandlingen presenteras också ett experimentellt arbete utfört vid Joint Quantum Institute, där en långlivad ihållande ström i ett torusformat Bose-Einstein-kondensat har skapats i en optisk fälla. Den kritiska hastigheten på strömmen har mätts i närvaron av en ställbar optisk barriär. Detta system kan ses som en första realisation av en grundläggande atomkrets. Slutligen presenteras även en teoretisk studie av övergången mellan en- och tvådimensionella system, där fasövergången mellan superytande och Mottisolation studeras.
|
296 |
Thermalisation, correlations and entanglement in Bose-Einstein condensatesAndrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
|
297 |
Thermalisation, correlations and entanglement in Bose-Einstein condensatesAndrew James Ferris Unknown Date (has links)
This thesis investigates thermalisation, correlations and entanglement in Bose-Einstein condensates. Bose-Einstein condensates are ultra-cold collections of identical bosonic atoms which accumulate in a single quantum state, forming a mesoscopic quantum object. They are clean and controllable quantum many-body systems that permit an unprecedented degree of experimental flexibility compared to other physical systems. Further, a tractable microscopic theory exists which allows a direct and powerful comparison between theory and experiment, propelling the field of quantum atom optics forward at an incredible pace. Here we explore some of the fundamental frontiers of the field, examining how non-classical correlations and entanglement can be created and measured, as well as how non-classical effects can lead to the rapid heating of atom clouds. We first investigate correlations between two weakly coupled condensates, a system analogous to a superconducting Josephson junction. The ground state of this system contains non-classical number correlation arising from the repulsion between the atoms. Such states are of interest because they may lead to more precise measurement devices such as atomic gyroscopes. Unfortunately thermal fluctuations can destroy these correlations, and great care is needed to experimentally observe non-classical effects. We show that adiabatic evolution can drive the isolated quantum system out of thermal equilibrium and decrease thermal noise, in agreement with a recent experiment [Esteve et al. Nature 455, 1216 (2008)]. This technique may be valuable for observing and using quantum correlated states in the future. Next, we analyse the rapid heating that occurs when a condensate is placed in a moving periodic potential. The dynamical instability responsible for the heating was the subject of much uncertainty, which we suggest was due to the inability of the mean-field approximation to account for important spontaneous scattering processes. We show that a model including non-classical spontaneous scattering can describe dynamical instabilities correctly in each of the regimes where they have been observed, and in particular we compare our simulations to an experiment performed at the University of Otago deep inside the spontaneous scattering regime. Finally, we proposed a method to create and detect entangled atomic wave-packets. Entangled atoms are interesting from a fundamental perspective, and may prove useful in future quantum information and precision measurement technologies. Entanglement is generated by interactions, such as atomic collisions in Bose-Einstein condensates. We analyse the type of entanglement generated via atomic collisions and introduce an abstract scheme for detecting entanglement and demonstrating the Einstein-Podolsky-Rosen paradox with ultra-cold atoms. We further this result by proposing an experiment where entangled wave-packets are created and detected. The entanglement is generated by the pairwise scattering that causes the instabilities in moving periodic potentials mentioned above. By careful arrangement, the instability process can be controlled to to produce two well-defined atomic wave-packets. The presence of entanglement can be proven by applying a series of laser pulses to interfere the wave-packets and then measuring the output populations. Realising this experiment is feasible with current technology.
|
298 |
Quantum Chemistry, and Eclectic Mix From Silicon Carbide to Size Consistency.Jamie Marie Rintelman January 2004 (has links)
19 Dec 2004. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 1948" Jamie Marie Rintelman. 12/19/2004. Report is also available in paper and microfiche from NTIS.
|
299 |
Three-body dynamics in single ionization of atomic hydrogen by 75 keV proton impactLaForge, Aaron Christopher, January 2010 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2010. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 21, 2010) Includes bibliographical references (p. 82-87).
|
300 |
Semiclassical, Monte Carlo model of atomic collisions : stopping and capture of heavy charged particles and exotic atom formation /Beck, William A., January 1997 (has links)
Thesis (Ph. D.)--University of Washington, 1997. / Vita. Includes bibliographical references (leaves [112]-119).
|
Page generated in 0.3283 seconds