• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

Ahmad, Zulfiqar, Laughlin, Thomas F. 20 August 2010 (has links)
In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented.
2

Dopad izolovaného deficitu F1FO-ATP syntázy na ostatní komplexy oxidační fosforylace v kožních fibroblastech v závislosti na podmínkách kultivace / Impact of isolate deficiency of F1FO-ATP syntthase on other complexes of oxidative phosphorylation in skin fibroblasts depending on cullture conditions

Kedrová, Kateřina January 2014 (has links)
Isolated deficiency of F1FO-ATPsynthase is a soubgroup of mitochondrial diseases caused by mutations in nuclear and mitochondrial-encoded structural subunits, or nuclear-encoded assembly factors of F1FO-ATPsynthase. The most often mutations are found in a MTATP6 gene localized in the mitochondrial DNA and a TMEM70 gene, localized in the nuclear DNA. A MTATP6 gene encodes subunit a of F1FO-ATPsynthase and its mutation usually leads to reduced phosphorylation activity of F1FO-ATPsynthase. A TMEM70 gene encodes a 21 kDa mitochondrial protein of the inner mitochondrial membrane of not completely explained function and its mutation results in the decrease in a content of fully assembled F1FO- ATPsynthase. The aim of this thesis was to investigate the impact of isolated F1FO- ATPsynthase deficiency on the oxidative phosphorylation system (complex I-IV), other selected mitochondrial proteins, and mitochondrial network in two cell lines of primary human skin fibroblasts with an isolated deficiency of F1FO-ATPsynthase (mutation m.8851T>C in MTATP6 and mutation c.317-2A>G in TMEM70) during the first days of their cultivation in media containing galactose or glucose as a carbohydrate source with a presence or absence of L-glutamine. The control cell line was found to have higher amounts of respiratory chain...
3

Studium deficitu lidské F1Fo-ATPsyntázy / Human F1Fo-ATPsynthase deficiency

Suldovská, Sabina January 2010 (has links)
F1FO-ATPsynthase is a key enzyme in energy metabolism of the cell. Its deficit is caused usually by mutations in two structural genes MT-ATP6 and MT-ATP8 encoded by the mitochondrial DNA or in nuclear genes ATPAF2 and TMEM70 encoding the biogenesis factors and structural gene ATP5E. Deficiency of the F1FO-ATPsynthase leads to progressive and serious phenotype affecting organs with high energy demands. The first symptoms usually occurs in neonatal age and prognosis of the disease is fatal. Mutations in these genes result in both qualitative and quantitative defects of the F1FO-ATPsynthase. The study of molecular bases of mitochondrial disorders including F1FO-ATPsynthase deficiency uses large number of biochemical and molecular-genetic methods to determine a proper diagnosis which is essential for the symptomatic therapy and genetic counselling in affected families. The aim of the diploma thesis was to characterise the F1FO-ATPsynthase deficiency in isolated mitochondria from the lines of cultured cells by the determination oligomycin- sensitive ATP-hydrolytic activity of the F1FO-ATPsynthase, enzymatic activities of the respiratory chain complexes and to analyse changes in the steady-state levels of the representative subunits and whole complex of the F1FO-ATPsynthase in comparison with controls. 3...

Page generated in 0.0405 seconds