1 |
Development of methods for profiling flavonoids and their metabolites in biological fluidsOliveira, Eduardo de Jesus January 2001 (has links)
No description available.
|
2 |
FOOD FOR BURNOUT PATIENTS : A Systematic Review of the Efficacy of Dietary Polyphenols on NeurogenesisRedgård, Nicklas January 2019 (has links)
Stress-related psychological ill health has increased dramatically in Europe. A diagnosis equivalent to occupational burnout can be found in the Swedish version of the tenth edition of the “International Statistical Classification of Diseases and Related Health Problems" by the World Health Organization. The Swedish National Board of Health and Welfare lists treatment suggestions including a section of self-care that recommended something that could be translated to “a sensible diet” (“vettig kost”) without providing evidence for what could constitute a sensible diet. By using the hypothesis of burnout being a stress-mediated decrease in neurogenesis which in turn decrease the ability to cope with stress, this article systematically reviews the efficacy of dietary polyphenols on neurogenesis in rodents to evaluate if dietary polyphenols could constitute a part of a sensible diet for burnout patients. Dietary polyphenols significantly increased various parts of neurogenesis, in rodents subjected to stressors, in some cases demonstrating effect sizes comparable to antidepressants. Adverse effects have been observed in extremely high doses and young rodents not exposed to induced stressors with a putative high level of neurogenesis.
|
3 |
Physiologically-obtainable polyphenol exposures modulate reactive oxygen and nitrogen species signaling in the C2C12 model of skeletal muscle ageingHayes, N., Fogarty, M., Sadofsky, L., Jones, Huw 28 August 2024 (has links)
Yes / Age-related frailty is a significant health and social care burden, with limited treatment options. There is a lack of suitable cell culture model for screening large numbers of test compounds to identify those which promote healthy skeletal muscle function. This paper describes the characterization of reactive oxygen and nitrogen species (RONS) signalling changes in young and aged myoblasts and myotubes using C2C12 cells, and the application of aged cultures to assess the effect of dietary polyphenols on RONS signalling. Aged myoblasts and myotubes showed significantly increased reactive oxygen species (p < 0.01 and p < 0.001 respectively), nitric oxide (p < 0.05 for myoblasts and myotubes), and lipid peroxidation (p < 0.05 for myoblasts and myotubes). Nine polyphenols were assessed in aged myoblasts and myotubes using concentrations and incubation times consistent with known pharmacokinetic parameters for these compounds. Although several polyphenols were seen to reduce single markers of RONS signalling, only kaempferol and resveratrol significantly reduced multiple markers in both cell models. Modulation of enzymatic antioxidant activities was assessed as a possible mechanism of action, although superoxide dismutase and catalase activities were significantly reduced in aged (versus young) myotubes (p < 0.01 and p < 0.05 respectively), no effect of polyphenol treatment on these enzyme activities were observed. Overall, this research has shown the utility of the C2C12 model (myoblasts and myotubes) for screening compounds in aged muscle, and that resveratrol and kaempferol (using pharmacokinetically-informed exposures) can modulate RONS signalling in skeletal muscle cells after an acute exposure. / NH is supported by a University of Hull-funded PhD studentship.
|
4 |
Cardiovascular protective effects of dietary polyphenolsLoke, Wai Mun January 2008 (has links)
Polyphenols are naturally-occurring phytochemicals, which form an integral part of the human diet. Results from epidemiological studies have associated polyphenol intake with reduced risk of cardiovascular diseases. Previous human intervention studies suggested that dietary polyphenols exert their cardioprotective effects through their antioxidant and anti-inflammatory effects. While most in vitro experiments have not accounted for the bioavailability and metabolism of these polyphenols, our work has provided direct evidence, using quercetin, that metabolic transformation, together with bioavailability, exert profound effects on bioactivity. We examined the effect of quercetin and its major metabolites on the production of pro-inflammatory eicosanoids by human leukocytes. Studies comparing free radical scavenging, antioxidant activity and eicosanoid production demonstrate that there are different structural requirements for antioxidant and anti-inflammatory activity. We also investigated the effect of metabolic transformation on flavonoid bioactivity by comparing the activity of quercetin and its major metabolites to inhibit inflammatory eicosanoid production from human leukocytes. Quercetin was a potent inhibitor of leukotriene B4 formation in leukocytes (IC50 ~ 2µM), and its activity was dependent on specific structural features, particularly the 2,3 double bond of the C ring. Functionalisation of the 3'-OH group with either methyl or sulfate reduced inhibitory activity up to 50% while a glucuronide substituent at the 3-OH effectively removed the leukotriene B4 inhibitory activity. The major quercetin metabolite quercetin-3'-O-sulfate retained considerable lipoxygenase inhibitory activity (IC50 ~ 7 µM) while quercetin-3-O-glucuronide maintained antioxidant activity but had no lipoxygenase inhibitory activity at physiologically relevant concentrations. We conclude that structural modification of quercetin due to metabolic transformation had a profound effect on bioactivity, and that the structural features required for antioxidant activity of 8 quercetin and related flavonoids were unrelated to those required for inhibition of inflammatory eicosanoids.
|
5 |
Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial PeptidesAhmad, Zulfiqar, Laughlin, Thomas F. 20 August 2010 (has links)
In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented.
|
Page generated in 0.0443 seconds