• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role of Attention and Response Based Learning in the Visual Hebb Supra-span Sequence Learning Task: Investigating Age-related Learning Deficits

Brasgold, Melissa 01 February 2012 (has links)
Using Hebb’s (1961) paradigm, it has been shown that older adults (OAs) fail to learn recurrent visuospatial supra-span sequence information (Turcotte, Gagnon, & Poirier, 2005); a deficit which has not been demonstrated on verbal versions of the same task or in younger adults (YAs). Since the Hebb paradigm is thought to rely on working memory and thus attention (Conway & Engle, 1996), one interpretation concerns an OA’s capacity to allocate the necessary attentional resources to carry out the various components of the task. Five studies investigated this proposal. The first three (Article 1) examined attention in a general manner by reducing the amount of attentional resources that a YA could devote to carrying out the visuospatial Hebb supra-span sequence learning task through the implementation of a verbal dual task (DT) procedure. The fourth (Article 2) further investigated the role of attention by using a DT induced at retrieval that overlapped extensively with the requirements (spatial and response features) of the visuospatial Hebb task. The final study (Article 3) aimed to use our previous findings to demonstrate learning among OAs in a visuospatial Hebb learning paradigm in which the motor response was replaced by a verbal response. Our findings confirm that attentional resources employed at the retrieval phase of the task appear to be particularly important for the demonstration of visuospatial sequence learning. The inclusion of a spatial and motor based DT at recall eliminated learning of the repeated sequence in YAs. Interestingly, the learning deficit of OAs was partially eliminated when the motor and spatial requirements at retrieval were reduced. Our findings offer strong support to the contention that supra-span learning of the Hebb type is not altered by the effect of age. However, learning deficits can be observed among OAs when the retrieval component of the task overly taxes attention-related processes. In the case of the visuospatial sequences, the basis of the deficit likely concerns an individual’s capacity to discriminate between responses made to previously presented sequences versus those that need to be made in reaction to the just seen sequence.
2

The Role of Attention and Response Based Learning in the Visual Hebb Supra-span Sequence Learning Task: Investigating Age-related Learning Deficits

Brasgold, Melissa 01 February 2012 (has links)
Using Hebb’s (1961) paradigm, it has been shown that older adults (OAs) fail to learn recurrent visuospatial supra-span sequence information (Turcotte, Gagnon, & Poirier, 2005); a deficit which has not been demonstrated on verbal versions of the same task or in younger adults (YAs). Since the Hebb paradigm is thought to rely on working memory and thus attention (Conway & Engle, 1996), one interpretation concerns an OA’s capacity to allocate the necessary attentional resources to carry out the various components of the task. Five studies investigated this proposal. The first three (Article 1) examined attention in a general manner by reducing the amount of attentional resources that a YA could devote to carrying out the visuospatial Hebb supra-span sequence learning task through the implementation of a verbal dual task (DT) procedure. The fourth (Article 2) further investigated the role of attention by using a DT induced at retrieval that overlapped extensively with the requirements (spatial and response features) of the visuospatial Hebb task. The final study (Article 3) aimed to use our previous findings to demonstrate learning among OAs in a visuospatial Hebb learning paradigm in which the motor response was replaced by a verbal response. Our findings confirm that attentional resources employed at the retrieval phase of the task appear to be particularly important for the demonstration of visuospatial sequence learning. The inclusion of a spatial and motor based DT at recall eliminated learning of the repeated sequence in YAs. Interestingly, the learning deficit of OAs was partially eliminated when the motor and spatial requirements at retrieval were reduced. Our findings offer strong support to the contention that supra-span learning of the Hebb type is not altered by the effect of age. However, learning deficits can be observed among OAs when the retrieval component of the task overly taxes attention-related processes. In the case of the visuospatial sequences, the basis of the deficit likely concerns an individual’s capacity to discriminate between responses made to previously presented sequences versus those that need to be made in reaction to the just seen sequence.
3

The Role of Attention and Response Based Learning in the Visual Hebb Supra-span Sequence Learning Task: Investigating Age-related Learning Deficits

Brasgold, Melissa 01 February 2012 (has links)
Using Hebb’s (1961) paradigm, it has been shown that older adults (OAs) fail to learn recurrent visuospatial supra-span sequence information (Turcotte, Gagnon, & Poirier, 2005); a deficit which has not been demonstrated on verbal versions of the same task or in younger adults (YAs). Since the Hebb paradigm is thought to rely on working memory and thus attention (Conway & Engle, 1996), one interpretation concerns an OA’s capacity to allocate the necessary attentional resources to carry out the various components of the task. Five studies investigated this proposal. The first three (Article 1) examined attention in a general manner by reducing the amount of attentional resources that a YA could devote to carrying out the visuospatial Hebb supra-span sequence learning task through the implementation of a verbal dual task (DT) procedure. The fourth (Article 2) further investigated the role of attention by using a DT induced at retrieval that overlapped extensively with the requirements (spatial and response features) of the visuospatial Hebb task. The final study (Article 3) aimed to use our previous findings to demonstrate learning among OAs in a visuospatial Hebb learning paradigm in which the motor response was replaced by a verbal response. Our findings confirm that attentional resources employed at the retrieval phase of the task appear to be particularly important for the demonstration of visuospatial sequence learning. The inclusion of a spatial and motor based DT at recall eliminated learning of the repeated sequence in YAs. Interestingly, the learning deficit of OAs was partially eliminated when the motor and spatial requirements at retrieval were reduced. Our findings offer strong support to the contention that supra-span learning of the Hebb type is not altered by the effect of age. However, learning deficits can be observed among OAs when the retrieval component of the task overly taxes attention-related processes. In the case of the visuospatial sequences, the basis of the deficit likely concerns an individual’s capacity to discriminate between responses made to previously presented sequences versus those that need to be made in reaction to the just seen sequence.
4

The Role of Attention and Response Based Learning in the Visual Hebb Supra-span Sequence Learning Task: Investigating Age-related Learning Deficits

Brasgold, Melissa January 2012 (has links)
Using Hebb’s (1961) paradigm, it has been shown that older adults (OAs) fail to learn recurrent visuospatial supra-span sequence information (Turcotte, Gagnon, & Poirier, 2005); a deficit which has not been demonstrated on verbal versions of the same task or in younger adults (YAs). Since the Hebb paradigm is thought to rely on working memory and thus attention (Conway & Engle, 1996), one interpretation concerns an OA’s capacity to allocate the necessary attentional resources to carry out the various components of the task. Five studies investigated this proposal. The first three (Article 1) examined attention in a general manner by reducing the amount of attentional resources that a YA could devote to carrying out the visuospatial Hebb supra-span sequence learning task through the implementation of a verbal dual task (DT) procedure. The fourth (Article 2) further investigated the role of attention by using a DT induced at retrieval that overlapped extensively with the requirements (spatial and response features) of the visuospatial Hebb task. The final study (Article 3) aimed to use our previous findings to demonstrate learning among OAs in a visuospatial Hebb learning paradigm in which the motor response was replaced by a verbal response. Our findings confirm that attentional resources employed at the retrieval phase of the task appear to be particularly important for the demonstration of visuospatial sequence learning. The inclusion of a spatial and motor based DT at recall eliminated learning of the repeated sequence in YAs. Interestingly, the learning deficit of OAs was partially eliminated when the motor and spatial requirements at retrieval were reduced. Our findings offer strong support to the contention that supra-span learning of the Hebb type is not altered by the effect of age. However, learning deficits can be observed among OAs when the retrieval component of the task overly taxes attention-related processes. In the case of the visuospatial sequences, the basis of the deficit likely concerns an individual’s capacity to discriminate between responses made to previously presented sequences versus those that need to be made in reaction to the just seen sequence.

Page generated in 0.1502 seconds