• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simultaneous activity and attenuation reconstruction in emission tomography

Dicken, Volker January 1998 (has links)
In single photon emission computed tomography (SPECT) one is interested in reconstructing the activity distribution f of some radiopharmaceutical. The data gathered suffer from attenuation due to the tissue density µ. Each imaged slice incorporates noisy sample values of the nonlinear attenuated Radon transform (formular at this place in the original abstract) Traditional theory for SPECT reconstruction treats µ as a known parameter. In practical applications, however, µ is not known, but either crudely estimated, determined in costly additional measurements or plainly neglected. We demonstrate that an approximation of both f and µ from SPECT data alone is feasible, leading to quantitatively more accurate SPECT images. The result is based on nonlinear Tikhonov regularization techniques for parameter estimation problems in differential equations combined with Gauss-Newton-CG minimization.
2

On the range of the Attenuated Radon Transform in strictly convex sets.

Sadiq, Kamran 01 January 2014 (has links)
In the present dissertation, we characterize the range of the attenuated Radon transform of zero, one, and two tensor fields, supported in strictly convex set. The approach is based on a Hilbert transform associated with A-analytic functions of A. Bukhgeim. We first present new necessary and sufficient conditions for a function to be in the range of the attenuated Radon transform of a sufficiently smooth function supported in the convex set. The approach is based on an explicit Hilbert transform associated with traces of the boundary of A-analytic functions in the sense of A. Bukhgeim. We then uses the range characterization of the Radon transform of functions to characterize the range of the attenuated Radon transform of vector fields as they appear in the medical diagnostic techniques of Doppler tomography. As an application we determine necessary and sufficient conditions for the Doppler and X-ray data to be mistaken for each other. We also characterize the range of real symmetric second order tensor field using the range characterization of the Radon transform of zero tensor field.

Page generated in 0.0981 seconds