1 |
Attitude Navigation using a Sigma-Point Kalman Filter in an Error State FormulationDiamantidis, Periklis-Konstantinos January 2017 (has links)
Kalman filtering is a well-established method for fusing sensor data in order to accuratelyestimate unknown variables. Recently, the unscented Kalman filter (UKF) has beenused due to its ability to propagate the first and second moments of the probability distribution of an estimated state through a non-linear transformation. The design of ageneric algorithm which implements this filter occupies the first part of this thesis. The generality and functionality of the filter were tested on a toy example and the results are within machine accuracy when compared to those of an equivalent C++ implementation.Application of this filter to the attitude navigation problem becomes non-trivial when coupled to quaternions. Challenges present include the non-commutation of rotations and the dimensionality difference between quaternions and the degrees of freedom of the motion. The second part of this thesis deals with the formulation of the UKF in the quaternion space. This was achieved by implementing an error-state formulation of the process model, bounding estimation in the infinitesimal space and thus de-coupling rotations from non-commutation and bridging the dimensionality discrepancy of quaternions and their respective covariances.The attitude navigation algorithm was then tested using an IMU and a magnetometer.Results show a bounded estimation error which settles to around 1 degree. A detailed look of the filter mechanization process was also presented showing expected behavior for estimation of the initial attitude with error tolerance of 1 mdeg. The structure and design of the proposed formulation allows for trivially incorporating other sensors inthe estimation process and more intricate modelling of the stochastic processes present,potentially leading to greater estimation accuracy. / Kalman filtrering är en vältablerad metod for att sammanväga sensordata för att erhålla noggranna estimat av okända variabler. Nyligen har den typ av kalman filter som kallas unscented Kalman filter (UKF) ökat i populäritet pa grund av dess förmåga att propagera de första och andra momenten för sannolikhetsfördelningen för ett estimera tillstånd genom en ickelinjär transformation. Designen av en generisk algoritm som implementerar denna typ av filter upptar den första delen av denna avhandling. Generaliteten och funktionaliteten för detta filter testades på ett minimalt exempel och resultaten var identiska med de för en ekvivalent C++-implementation till den noggrannhet som tillåts av den nita maskinprecisionen. Användandet av detta filter för attitydnavigering blir icke-trivialt när det anvands forkvaternioner. De utmaningar som uppstar inkluderar att rotationer inte kommuterar och att de finns en skillnad i dimensionalitet mellan kvaternioner och antalet frihetsgrader i rörelsen. Den andra delen av denna avhandling behandlar formuleringen av ett UKF för ett tillstånd som inkluderar en kvaternion. Detta gjordes genom att implementera en så kallad error state-formulering av processmodellen, vilken begränsar estimeringen till ett innitesimalt tillstånd och därigenom undviker problemen med att kvaternionmultiplikation inte kommuterar och överbryggar skillnaden i dimensionalitet hos kvaternioner och deras motsvarande vinkelosäkerheter.Attitydnavigeringen testades sedan med hjälp av en IMU och en magnetometer.Resultaten visade ett begränsat estimeringsfel som ställer in sig kring 1 grad. Strukturen och designen av den föreslagna formuleringen möjliggör på ett rattframt satt tillägg av andra sensorer i estimeringsprocessen och mer detaljerad modellering av de stokastiska processerna, vilket potentiellt leder till högre estimering noggrannhet.
|
Page generated in 0.1068 seconds