• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthetic generators for simulating social networks

Ali, Awrad Mohammed 01 January 2014 (has links)
An application area of increasing importance is creating agent-based simulations to model human societies. One component of developing these simulations is the ability to generate realistic human social networks. Online social networking websites, such as Facebook, Google+, and Twitter, have increased in popularity in the last decade. Despite the increase in online social networking tools and the importance of studying human behavior in these networks, collecting data directly from these networks is not always feasible due to privacy concerns. Previous work in this area has primarily been limited to 1) network generators that aim to duplicate a small subset of the original network's properties and 2) problem-specific generators for applications such as the evaluation of community detection algorithms. In this thesis, we extended two synthetic network generators to enable them to duplicate the properties of a specific dataset. In the first generator, we consider feature similarity and label homophily among individuals when forming links. The second generator is designed to handle multiplex networks that contain different link types. We evaluate the performance of both generators on existing real-world social network datasets, as well as comparing our methods with a related synthetic network generator. In this thesis, we demonstrate that the proposed synthetic network generators are both time efficient and require only limited parameter optimization.

Page generated in 0.0942 seconds