• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Metallicity of Intergalactic Gas in Cosmic Voids

Stocke, John T., Danforth, Charles W., Shull, J. Michael, Penton, Steven V., Giroux, Mark L. 10 December 2007 (has links)
We have used the Hubble STIS and FUSE archives of ultraviolet spectra of bright AGNs to identify intergalactic Lya absorbers in nearby (z ≤ 0.1) voids. From a parent sample of 651 Lyα absorbers, we identified 61 "void absorbers" located >1.4 h70-1 Mpc from the nearest L* or brighter galaxy. Searching for metal absorption in high-quality (S/N > 10) spectra at the location of three diagnostic metal lines (O VI λ1032, C IV λ1548, Si III λ1206), we detected no metal lines in any individual absorber, or in any group of absorbers using pixel co-addition techniques. The best limits on metal-line absorption in voids were set using four strong Lya absorbers with NHI > 1014 cm-2, with 3 σ equivalent-width limits ranging from 8 mÅ (O VI) to 7-15 mÅ (C IV) and 4-10 mÅ (Si III). Photoionization modeling yields metallicity limits Z < 10 -1.8±0.4 Z⊙ from nondetections of C IV and VI, some ∼6 times lower than those seen in Lyα/O VI absorbers at z < 0.1. Although the void Lyα absorbers could be pristine material, considerably deeper spectra are required to rule out a universal metallicity floor produced by bursts of early star formation, with no subsequent star formation in the voids. The most consistent conclusion derived from these low-z results and similar searches at z = 3-5 is that galaxy filaments have increased their mean IGM metallicity by factors of 30-100 since z ∼ 3.

Page generated in 0.1056 seconds