Spelling suggestions: "subject:"auftragschweißen"" "subject:"laserstrahlschweißen""
1 |
Schichtweises drahtbasiertes Laserauftragschweißen und Fräsen zum Aufbau metallischer Bauteile /Freyer, Carsten. January 2007 (has links)
Techn. Hochsch., Diss.--Aachen, 2006.
|
2 |
Entwicklung und Qualifizierung von Innenbearbeitungsköpfen für das Laserstrahl-Auftragschweißen /Karimov, Khudaverdi. January 2005 (has links)
Techn. Hochsch., Diss., 2005--Aachen.
|
3 |
Modellierung - Simulation des Plasma-Schweißens zur Entwicklung innovativer Schweißbrenner / Modeling and simulation of plasma welding for the development of innovative welding torchesAlaluss, Khaled, Mayr, Peter 06 June 2017 (has links) (PDF)
- An Plasmaschweißbrennern treten starke thermomechanische Beanspruchungen aufgrund der ablaufenden thermophysikalischen Teilprozesse auf. Diese können durch funktionsgerechte werkstoffliche, konstruktive und fertigungstechnische Brennergestaltung bewerkstelligt und die Thermobilanz und Lebensdauer der Brenner verbessert werden.
- Anhand des entwickelten strömungs-thermomechanischen/magneto-hydro-dynamischen Simulationsmodells wurden werkstofflich-konstruktive Lösungsansätze für Entwicklung von physikalischen Prozesswirkprinzipien der betrachteten Plasma-Schweißprozessvarianten erarbeitet.
- Differente Einflussgrößen des Plasmaschweißprozesses wurden erfasst, analysiert und ihre Wirkung auf Prozessverhalten und Brennerkonstruktion ermittelt.
- Die damit gewonnenen Erkenntnisse wurden für werkstoffliche, technisch-konstruktive Brennerentwicklung bzgl. der Ausführungsgeometrien, Prozessgaszuführung und Brennerkühlung genutzt.
|
4 |
Qualifizierung des Plasma-Pulver-Auftragschweißprozesses für die generative Herstellung von Bauteilen der Legierung 1.4404Höfer, Kevin 03 March 2021 (has links)
Die generative Fertigung stellt eine Schlüsseltechnologie der Zukunft für weite Teile der Wirtschaft dar. Der Prozess des Plasma-Pulver-Auftragschweißens soll eine Lücke im bestehenden Portfolio an generativen Prozessen schließen. Zunächst wurde der klassische Beschichtungsprozess an die Erfordernisse der generativen Fertigung angepasst. Im Ergebnis konnten Bauteile, welche aus bis zu vier verschiedenen Materialen bestehen können, prozesssicher generiert werden. Die anschließende Betrachtung des Einflusses der Systemparameter auf das Bauteil ergab, dass die Haupteinflussgrößen auf die Bauteilgeometrie die Schweißstromstärke, die Schweißgeschwindigkeit, der Pulvermassestrom sowie die Plasmagasmenge sind. Die Bauteildichte sowie der Pulverausnutzungsgrad zeigen keine signifikanten Änderungen innerhalb des hier betrachteten Bereiches. Im Mittel konnte eine relative Bauteildichte von 98,7 % und ein Materialausnutzungsgrad von 77 % bestimmt werden. In Summe ist der Prozess durch eine stabile Auftragscharakteristik mit mindestens vergleichbaren Eigenschaften zu bestehenden Systemen zu bewerten und sehr gut als generativer Prozess, insbesondere für die Herstellung von mehrkomponentigen Bauteilen, geeignet. / Additive manufacturing is one of the key technologies of the future for large parts of the economy. The process of plasma powder deposition welding is intended to close a gap in the existing portfolio of generative processes. First, the classical cladding process was adapted to the requirements of additive manufacturing. As a result, components, which can consist of up to four different materials, could be reliably generated. The subsequent consideration of the influence of the system parameters on the component showed that the main influencing variables on the part geometry are the welding current, the welding speed, the powder flow rate and the plasma gas volume. The component density as well as the powder utilization rate show no significant changes within the range considered here. On average, a relative component density of 98.7 % and a material utilization rate of 77 % could be determined. In sum, the process can be characterized by a stable application characteristic with at least comparable properties to existing systems and is very well suitable as an additive manufacturing process, especially for the production of multi material components.
|
5 |
Modellierung - Simulation des Plasma-Schweißens zur Entwicklung innovativer SchweißbrennerAlaluss, Khaled, Mayr, Peter 06 June 2017 (has links)
- An Plasmaschweißbrennern treten starke thermomechanische Beanspruchungen aufgrund der ablaufenden thermophysikalischen Teilprozesse auf. Diese können durch funktionsgerechte werkstoffliche, konstruktive und fertigungstechnische Brennergestaltung bewerkstelligt und die Thermobilanz und Lebensdauer der Brenner verbessert werden.
- Anhand des entwickelten strömungs-thermomechanischen/magneto-hydro-dynamischen Simulationsmodells wurden werkstofflich-konstruktive Lösungsansätze für Entwicklung von physikalischen Prozesswirkprinzipien der betrachteten Plasma-Schweißprozessvarianten erarbeitet.
- Differente Einflussgrößen des Plasmaschweißprozesses wurden erfasst, analysiert und ihre Wirkung auf Prozessverhalten und Brennerkonstruktion ermittelt.
- Die damit gewonnenen Erkenntnisse wurden für werkstoffliche, technisch-konstruktive Brennerentwicklung bzgl. der Ausführungsgeometrien, Prozessgaszuführung und Brennerkühlung genutzt.
|
6 |
Beeinflussung von geschweißten Auftragschichten durch instationäre Gasströme im Plasma-Pulver-SchweißprozessEbert, Lars 11 March 2011 (has links) (PDF)
In der vorliegenden Arbeit wurde untersucht, wie sich instationäre Plasma- und Fördergasvolumenströme nutzen lassen, um den Plasma-Pulver-Auftragschweißprozess in seiner Gesamtheit zu beeinflussen.
Dabei wurden die Veränderungen in der Lichtbogencharakteristik, der Pulverzuführung und insbesondere dem Schmelzbad analysiert und in einem theoretischen Prozessmodell zusammengefasst. Die gewonnenen Ergebnisse und die aufgezeigten Wirkzusammenhänge konnten in der Folge dazu genutzt werden, die Hartstoffverteilung in Pseudolegierungen und den mikrostrukturellen Aufbau geschweißter konventioneller Hartschichten zu modifizieren. / In the present studies it is examined, how unsteady gas flows can be used to modify the plasma transfer arc welding process in its entirety. In the first step it was analysed in which different ways non-steady-state plasma and transport gas flows influence the arc characteristics, the powder transport and the melt bead properties. With the obtained results a theoretical model was developed, to describe the observed behaviours and understand the coherences. Subsequently the preliminary findings were used to alter the distribution of tungsten-carbide in a welded hardface composite coating and to modify the microstructure of a conventional alloy welded with the plasma transfer arc process.
|
7 |
Modellbildung und Simulation des Plasma-Schweißens zur Entwicklung innovativer Schweißbrenner / Modeling and simulation of plasma welding for the development of innovative welding torchesAlaluss, Khaled Ahmed 21 February 2017 (has links) (PDF)
In der vorliegenden Habilitationsarbeit wurden technisch-konstruktive Lösungsansätze basierend auf einem entwickelten strömungs-thermomechanischen/magneto-hydro-dynamischen Simulationsmodell zur Entwicklung/Charakterisierung eines physikalischen Prozesswirkprinzips des betrachteten Mikro- und Hochleistungs- sowie Orbital-Plasma-Schweißprozesses und dessen physikalischer Effekte entwickelt. Dabei wurden die differenten Einflussgrößen beim Plasmaschweißprozess erfasst, analysiert und ihre Wirkung auf Schweißprozessverhalten und Brennerkonstruktion charakterisiert. Die damit gewonnenen Ergebnisse wurden zur werkstofflichen, technisch-konstruktiven Entwicklung der Brennerkopfmodelle hinsichtlich der Ausführungsgeometrien des Prozessgaszuführungs- und Brennerkühlsystems genutzt.
Im Rahmen des erarbeiteten thermomechanischen Simulationsmodells wurden die beim Plasma-Auftragschweißen von Verbundbauteilen auftretenden Temperaturfelder, Verformungen und Eigenspannungen vorausbestimmt, untersucht und analysiert. Mittels des erarbeiteten Simulationsmodells wurden werkstoffliche, konstruktive und fertigungstechnische Maßnahmen zur Minimierung/Beeinflussung schweißbedingter Verformungen und Eigenspannungen simulativ untersucht und bewertet. / In this work, technical and constructive solutions were developed based on simulation models (process and structural) for fluid mechanical, thermomechanical and magneto-hydrodynamic effects. The simulation process included improving and characterising the physical operating principles for micro plasma welding, high performance plasma welding and orbital plasma welding. Also, the physical effects for the above plasma welding processes were studied and analysed. From these different physical properties of the parameters for the plasma welding processes, and their effects on plasma welding process behaviour and torch design were analysed and characterised. The results were used for the development and construction of plasma welding torch models, which included material selection and geometrical design such as, process gas supply design, torch cooling system design, and other related torch designs.
By developing the thermomechanical simulation model, deformations and residual stresses that were generated by heating during the plasma welding process were investigated and analysed. The developed thermomechanical model
included material, structural and welding specifications such as buffering and preheating. Simulations utilizing this model were used in order to reduce the residual stresses and deformations of the welded components.
|
8 |
Beeinflussung von geschweißten Auftragschichten durch instationäre Gasströme im Plasma-Pulver-SchweißprozessEbert, Lars 17 February 2011 (has links)
In der vorliegenden Arbeit wurde untersucht, wie sich instationäre Plasma- und Fördergasvolumenströme nutzen lassen, um den Plasma-Pulver-Auftragschweißprozess in seiner Gesamtheit zu beeinflussen.
Dabei wurden die Veränderungen in der Lichtbogencharakteristik, der Pulverzuführung und insbesondere dem Schmelzbad analysiert und in einem theoretischen Prozessmodell zusammengefasst. Die gewonnenen Ergebnisse und die aufgezeigten Wirkzusammenhänge konnten in der Folge dazu genutzt werden, die Hartstoffverteilung in Pseudolegierungen und den mikrostrukturellen Aufbau geschweißter konventioneller Hartschichten zu modifizieren. / In the present studies it is examined, how unsteady gas flows can be used to modify the plasma transfer arc welding process in its entirety. In the first step it was analysed in which different ways non-steady-state plasma and transport gas flows influence the arc characteristics, the powder transport and the melt bead properties. With the obtained results a theoretical model was developed, to describe the observed behaviours and understand the coherences. Subsequently the preliminary findings were used to alter the distribution of tungsten-carbide in a welded hardface composite coating and to modify the microstructure of a conventional alloy welded with the plasma transfer arc process.
|
9 |
Modellbildung und Simulation des Plasma-Schweißens zur Entwicklung innovativer SchweißbrennerAlaluss, Khaled Ahmed 21 February 2017 (has links)
In der vorliegenden Habilitationsarbeit wurden technisch-konstruktive Lösungsansätze basierend auf einem entwickelten strömungs-thermomechanischen/magneto-hydro-dynamischen Simulationsmodell zur Entwicklung/Charakterisierung eines physikalischen Prozesswirkprinzips des betrachteten Mikro- und Hochleistungs- sowie Orbital-Plasma-Schweißprozesses und dessen physikalischer Effekte entwickelt. Dabei wurden die differenten Einflussgrößen beim Plasmaschweißprozess erfasst, analysiert und ihre Wirkung auf Schweißprozessverhalten und Brennerkonstruktion charakterisiert. Die damit gewonnenen Ergebnisse wurden zur werkstofflichen, technisch-konstruktiven Entwicklung der Brennerkopfmodelle hinsichtlich der Ausführungsgeometrien des Prozessgaszuführungs- und Brennerkühlsystems genutzt.
Im Rahmen des erarbeiteten thermomechanischen Simulationsmodells wurden die beim Plasma-Auftragschweißen von Verbundbauteilen auftretenden Temperaturfelder, Verformungen und Eigenspannungen vorausbestimmt, untersucht und analysiert. Mittels des erarbeiteten Simulationsmodells wurden werkstoffliche, konstruktive und fertigungstechnische Maßnahmen zur Minimierung/Beeinflussung schweißbedingter Verformungen und Eigenspannungen simulativ untersucht und bewertet. / In this work, technical and constructive solutions were developed based on simulation models (process and structural) for fluid mechanical, thermomechanical and magneto-hydrodynamic effects. The simulation process included improving and characterising the physical operating principles for micro plasma welding, high performance plasma welding and orbital plasma welding. Also, the physical effects for the above plasma welding processes were studied and analysed. From these different physical properties of the parameters for the plasma welding processes, and their effects on plasma welding process behaviour and torch design were analysed and characterised. The results were used for the development and construction of plasma welding torch models, which included material selection and geometrical design such as, process gas supply design, torch cooling system design, and other related torch designs.
By developing the thermomechanical simulation model, deformations and residual stresses that were generated by heating during the plasma welding process were investigated and analysed. The developed thermomechanical model
included material, structural and welding specifications such as buffering and preheating. Simulations utilizing this model were used in order to reduce the residual stresses and deformations of the welded components.
|
Page generated in 0.0625 seconds