1 |
Improving expressivity in desktop interactions with a pressure-augmented mouseCechanowicz, Jared Edward 20 November 2008
Desktop-based Windows, Icons, Menus and Pointers (WIMP) interfaces have changed very little in the last 30 years, and are still limited by a lack of powerful and expressive input devices and interactions. In order to make desktop interactions more expressive and controllable, expressive input mechanisms like pressure input must be made available to desktop users. One way to provide pressure input to these users is through a pressure-augmented computer mouse; however, before pressure-augmented mice can be developed, design information must be provided to mouse developers. The problem we address in this thesis is that there is a lack of ergonomics and performance information for the design of pressure-augmented mice. Our solution was to provide empirical performance and ergonomics information for pressure-augmented mice by performing five experiments. With the results of our experiments we were able to identify the optimal design parameters for pressure-augmented mice and provide a set of recommendations for future pressure-augmented mouse designs.
|
2 |
Improving expressivity in desktop interactions with a pressure-augmented mouseCechanowicz, Jared Edward 20 November 2008 (has links)
Desktop-based Windows, Icons, Menus and Pointers (WIMP) interfaces have changed very little in the last 30 years, and are still limited by a lack of powerful and expressive input devices and interactions. In order to make desktop interactions more expressive and controllable, expressive input mechanisms like pressure input must be made available to desktop users. One way to provide pressure input to these users is through a pressure-augmented computer mouse; however, before pressure-augmented mice can be developed, design information must be provided to mouse developers. The problem we address in this thesis is that there is a lack of ergonomics and performance information for the design of pressure-augmented mice. Our solution was to provide empirical performance and ergonomics information for pressure-augmented mice by performing five experiments. With the results of our experiments we were able to identify the optimal design parameters for pressure-augmented mice and provide a set of recommendations for future pressure-augmented mouse designs.
|
Page generated in 0.1674 seconds