Spelling suggestions: "subject:"aurora acceleration region""
1 |
Numerical modeling of auroral processesVedin, Jörgen January 2007 (has links)
One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.
|
2 |
Numerical modeling of auroral processesVedin, Jörgen January 2007 (has links)
<p>One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.</p>
|
3 |
Multiple CubeSat Mission for Auroral Acceleration Region StudiesCastro, Marley Santiago January 2021 (has links)
The Auroral Acceleration Region (AAR) is a key region in understanding the interactionbetween the Magnetosphere and Ionosphere. To understand the physical, spatial, and temporal features of the region, multi-point measurements are required. Distributed small-satellite missions such as constellations of multiple nano satellites (for example multi-unit CubeSats) would enable such type of measurements. The capabilities of such a mission will highly depend on the number of satellites - one reason that makes low-cost platforms like CubeSats a very promising choice. In a previous study, the state-of-the-art of miniaturized payloads for AAR measurements was analyzed and evaluated on the capabilities of different multi-CubeSat configurations equipped with such payloads in addressing different open questions in AAR. This thesis will provide the mission analysis of such a multi-CubeSat mission to the AAR and possible mission design. This includes defining the mission scenario and associated requirements, developing a mathematical description of AAR that allows for specific regions in space to be targeted, an optimisation process for designing orbits targeting these regions, conversion of a satellite formation to appropriate orbits, verifying the scientific performance of this formation and the various costs associated with entering, maintaining, and exiting these orbits.
|
Page generated in 0.1098 seconds