1 |
Comportement viscoplastique des alliages austénitiques pendant la recristallisation sous faibles contraintes / Viscoplastic behavior of austenitic alloys during recrystallisation under low stressesZhang, Minghao 10 December 2014 (has links)
Pendant la recristallisation de certains alliages sous faibles contraintes, une accélération de la déformation viscoplastique, liée à la recristallisation est observée. Ce phénomène, connu en anglais comme « Recrystallisation-Induced Plasticity » (RIP), est susceptible d'intervenir dans de nombreux procédés de mise en forme à chaud. Pourtant, les mécanismes physiques ne sont pas clairement établis et aucune loi de comportement n'est disponible. Cette étude a comme objectifs principaux la compréhension de ce phénomène et le développement des cadres constitutifs de modélisation. Pour cela, ce travail de thèse s'appuie (i) sur les données expérimentales obtenues sur des alliages Fe-Ni, sollicités sous différentes conditions après écrouissage à froid ou à chaud, et (ii) sur les caractéristiques microstructurales observées par EBSD et MET. Les résultats expérimentaux suggèrent que le comportement viscoplastique des grains recristallisés et leur fraction volumique jouent des rôles importants. Afin de quantifier leurs impacts, deux lois de comportement ont été développées : (i) en traitant la microstructure comme composée de deux "phases" (i.e. grains écrouis et grains recristallisés) et en homogénéisant le comportement du matériau en fonction des propriétés de chaque phase, et (ii) en traitant la microstructure comme celle d'un matériau homogène qui évolue selon les lois évolutives des variables internes associées aux obstacles ainsi qu'à la fraction volumique des grains recristallisés. Les résultats numériques confirment que la déformation viscoplastique par dislocations, couplée avec une réduction de la densité de dislocations, joue un rôle essentiel et rend compte d'environ 70% de la déformation totale. Le travail accompli dans cette thèse apporte des connaissances fondamentales sur le phénomène RIP, ce qui permet d'améliorer le contrôle des dimensions d'un produit lors de sa mise en forme à chaud. / An obvious increase in strain rate is observed during recrystallisation when an alloy is subjected to low stress levels. This phenomenon, known as “Recrystallisation-Induced Plasticity” (RIP), is observed in a number of hot-forming processes. The dominant underlying mechanisms are not yet clear and no constitutive viscoplastic material formulation is available to describe the associated microstructural evolution and mechanical behaviour. This thesis work aims at understanding this phenomenon and developing physics-based models to describe and predict it. In this study, the deformation evolution during recrystallisation is investigated on hot and cold worked Fe-Ni alloys subjected to different relevant temperature-stress conditions. The microstructural characteristics of partially and fully recrystallised materials are first identified through EBSD and TEM observations. The experimental results reveal that deformation accelerations during recrystallisation are mainly associated with the viscoplastic behaviour of recrystallised grains and their evolving volume fraction. Two sets of constitutive equations have been developed to model the RIP phenomenon: (i) one where the material is assumed to be composed of two “phases” (i.e. recrystallised grains and cold-worked grains) and the flow behaviour of the alloy is obtained by homogenising that of each “phase”, and (ii) another where the material is treated as an homogeneous one and where its flow behaviour is assumed to depend on the microstructural “state” described by two internal state variables, namely those associated with strong obstacles and with the recrystallisation volume fraction. The results of this work confirm that a considerable contribution to the deformation enhancement associated with the RIP mechanism arises from viscoplastic deformation by dislocation activity, coupled with a reduction in the dislocation density by recovery processes. This contribution accounts for approximately 70% of the total deformation. It will be shown that this work provides fundamental knowledge to the understanding of the RIP phenomenon which should, in turn, contribute towards improving the control of product dimensioning in hot-forming processes.
|
2 |
Quantification of the Susceptibility to Ductility-Dip Cracking in FCC AlloysLuther, Samuel James 29 September 2022 (has links)
No description available.
|
Page generated in 0.0927 seconds