• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação de esportes em vídeos amadores e profissionais

MAGALHÃES, Guilherme Ramalho 26 August 2014 (has links)
Submitted by Luiz Felipe Barbosa (luiz.fbabreu2@ufpe.br) on 2015-03-09T14:33:01Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Guilherme Magalhães.pdf: 2926974 bytes, checksum: 42b9985915490009da1e1c5dc2c21028 (MD5) / Made available in DSpace on 2015-03-09T14:33:01Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) DISSERTAÇÃO Guilherme Magalhães.pdf: 2926974 bytes, checksum: 42b9985915490009da1e1c5dc2c21028 (MD5) Previous issue date: 2014-08-26 / Com a grande proliferação de vídeos compartilhados na internet e o crescimento na sua utilização, cada vez mais torna-se indispensável a utilização de métodos automatizados para agrupar, analisar, indexar e buscar esses vídeos. Um dos tipos de análise de grande interesse atualmente é a análise semântica de vídeos de esportes devido as grandes possibilidades de aplicação comercial. Devido a grande diferença entre as regras e dinâmica de jogo, a abordagem mais comumente utilizada é primeiro realizar a identificação do gênero esportivo do vídeo para só então realizar uma análise semântica. Este processo é conhecido como categorização ou classificação de vídeos de esportes. A maior parte dos bancos de vídeos de esportes disponíveis para análise são compostos apenas por vídeos produzidos e transmitidos pela televisão. Neste trabalho, analisamos diversas técnicas para a classificação de vídeos de esportes e propomos uma combinação de características de cor (Autocorrelogramas) e de textura (Local Binary Patterns - LBP) para realizar a classificação do gênero esportivo em frames extraídos das sequências de vídeos. Nossa base de vídeos gerada para testes é composta por vídeos de três diferentes esportes, obtidos de fontes de diferente natureza: Vídeos capturados com equipamento profissional e transmitidos pela TV e sequências de vídeos geradas por usuários comuns através de smartphones. Esse tipo de tarefa representa um desafio porque vídeos amadores não são editados, as câmeras quase sempre se movem de maneira não-controlada e o ponto de visualização raramente é ideal. Nossa abordagem mostra uma taxa de classificação comparável com as técnicas do estado da arte quando as características são utilizadas separadas e um aprimoramento significativo quando são utilizadas de forma conjunta.

Page generated in 0.0536 seconds