• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 13
  • 13
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quorum sensing Rezeptorprotein LuxP – gentechnisches Design von LuxP-Derivaten zur Anwendung in der Biosensorik

Ihle, Karolina 17 January 2011 (has links) (PDF)
Als Quorum sensing (QS) wird die Kommunikation zwischen Bakterien bezeichnet. Diese basiert auf kleinen Signalmolekülen, die Autoinducer (AI) genannt werden. Durch QS werden von Bakterien Verhaltensweisen wie Fähigkeit zur Symbiose, Virulenz, Produktion von Antibiotika und Bildung von Biofilmen reguliert. Die Kommunikation kann innerhalb einer Spezies (Intraspezies-Kommunikation) oder mehreren Spezies (Interspezies-Kommunikation) erfolgen. Gram-negative Bakterien kommunizieren über acetylierte Homoserinlaktone (AHL), Gram-positive Bakterien dagegen benutzen modifizierte Oligopeptide als Autoinducer. Für die Interspezies-Kommunikation dient der Autoinducer-2 (AI-2). AI-2 entsteht auf dem Weg der spontanen Zyklisierung von 4,5-Dihydroxy-2,3-Pentadion (DPD), der von LuxS synthetisiert wird. Die Universalität des AI-2 als Signalmoleküls basiert auf dessen chemischen Eigenschaften. Als biologisch aktive Formen von DPD gelten S-THMF-Borat (bei marinen Bakterien wie Vibrio harveyi) und R-THMF (z.B. bei Enterobakterien wie Escherichia coli oder Salmonella enterica Serovar Typhimurium). AI-2 wird bei allen Bakterien von einem periplasmatischen Rezeptor gebunden. S-THMF-Borat bindet spezifisch an den Rezeptor LuxP, R-THMF dagegen an den Rezeptor LsrR. Durch die Anbindung des AI-2 verändert sich die Konformation des Rezeptors, was als Signal über weitere Proteine in die Zelle weitergeleitet wird. In E. coli ist die Expression des Operons lsrACDBFGE von AI-2 abhängig. Der lsr-Promotor wird von dem Repressor LuxR, Phospo-AI-2 sowie dem cAMP-CRP-Komplex reguliert. In dieser Arbeit wurden die molekularbiologische Grundlagen zur Entwicklung eines AI-2-Biosensors gelegt. Es wurden mehrere Fusionskonstrukte des V. harveyi AI-2 Rezeptors LuxP sowie dessen Derivate mit veränderter Affinität zur AI-2 kreiert, in E. coli exprimiert und aufgereinigt. Auch Rezeptorproteine von Vibrio fischeri sowie E. coli konnten erfolgreich exprimiert werden. Die Expression der Proteine erfolgte in E. coli luxS- Deletionsstämmen, die hierfür konstruiert worden sind. Die AI-2-Rezeptorproteine werden in E. coli vorwiegend in Form von inclusion bodys exprimiert. Nur ein Teil des Proteins ist löslich und kann für die Aufreinigung unter nativen Bedingungen verwendet werden. Auf der Basis von E. coli luxS- Deletionsstämmen wurde ein Bioassay entwickelt, der für die Detektion von AI-2 verwendet werden kann. Hierfür wurden mehrere Reporterplasmide konstruiert, in denen das rot fluoreszierende Protein DsRed unter die Kontrolle des lsr-Promotors von E. coli kloniert wurden. Dabei konnte unter Verwendung einer dieser Reporterplasmide (pBRDsRed) sowie des luxS-Deletionsstammes KIB1 Bioassay-Bedingungen etabliert werden, die einen Nachweis von AI-2 ermöglichen. Die für den Assay benötigten AI-2-Moleküle wurden in vitro mithilfe der Enzyme Pfs und LuxS und S-Adenosyl-Homocystein (SAH) als Substrat hergestellt. Der entwickelte AI-2-Bioassay wurde für die Bestimmung der Bindeaktivität der V. harveyi LuxP-Derivate verwendet. Die resultierenden Ergebnisse wiesen eine hohe Reproduzierbarkeit (1,2 bis 11,3 % Standartabweichung) auf.
2

The Influences of LuxS in Escherichia coli Biofilm Formation and Improving Teacher Quality through the Bio-Bus Program

Robbins, Chandan Morris 05 May 2012 (has links)
The objectives of this work are: 1) to agarose-stabilize fragile biofilms for quantitative structure analysis; 2) to understand the influences of LuxS on biofilm formation; 3) to improve teacher quality by preparing Georgia’s middle school science teachers to integrate inquiry-based, hands-on research modules in the classroom. Quantitative digital image analysis demonstrated the effectiveness of the agarose stabilization technique for generating reproducible measurements of three dimensional biofilm structure. The described method will also benefit researchers who transport their flow cell-cultivated biofilms to a core facility for imaging. AI-2-dependent and independent effects of LuxS on biofilm-related phenotypes were revealed, suggesting that LuxS is a versatile enzyme, possessing multiple functions in E. coli ecology that could assist E. coli in adapting to diverse conditions. Overall, the work presented in this dissertation supported the concept that quorum sensing, biofilm formation, and cell adhesion are largely related. Additionally, through this project, teachers enhanced content knowledge and confidence levels, mastered innovative teaching strategies and integrated inquiry-based, inter-disciplinary, hands-on activities in the classroom. As a result, student learning was enhanced, and teachers are better equipped to give Georgia’s students a solid foundation in the sciences.
3

Structure/Function Analysis of the Quorum-sensing Regulator EsaR from the Plant Pathogen Pantoea stewartii

Schu, Daniel Joseph 24 July 2009 (has links)
Pantoea stewartii subsp. stewarti is the causative agent of Stewart's wilt disease in maize. Disease symptoms develop after the bacteria grow to high cell densities in the plant xylem and secrete an abundance of exopolysaccharide (EPS). EPS production is regulated by quorum sensing. Two regulatory proteins are key to the process of quorum sensing, the LuxI and LuxR homologues EsaI and EsaR. Most LuxR homologues function as activators of transcription in the presence of their cognate acylated homoserine lactone signal (AHL). EsaR utilizes an AHL-response opposite of the majority of the LuxR homologues. EsaR represses EPS production at low cell densities. However, at high cell densities when high concentrations of AHL are present, EsaR is inactivated and derepression of EPS production occurs. The mechanism that enables EsaR to respond to AHL in a manner opposite to that of most LuxR homologues remains elusive. A comparative study of EsaR and the well characterized quorum-sensing regulators LuxR from Vibrio fischeri and TraR from Agrobacterium tumefaciens was initiated. Previous studies demonstrated that in the absence of AHL, EsaR retains the ability to function as a weak activator of the lux operon in recombinant Escherichia coli. This thesis research further characterized the role of EsaR as an activator. Variant forms of EsaR with deletions or single residue substitutions were generated and their ability to regulate transcription was examined in vivo. Furthermore, a native EsaR-activated promoter has been identified, which controls expression of a putative regulatory sRNA in P. stewartii. It is apparent that EsaR functions as a transcription factor at low concentrations of AHL as demonstrated by its ability to inhibit EPS production. At high concentrations, the AHL appears to bind and cause a conformational shift in the protein leading to its inactivation. The second goal of this study was to further elucidate the mechanism by which AHL regulates EsaR. Pulse-chase experiments demonstrated that EsaR is resistant to proteases with or without AHL in vivo. Limited proteolytic digestions in vitro suggest that the protein does undergo conformational changes in response to AHL. Gel filtration chromatography, sucrose gradient ultracentrifugation, and cross-linking experiments proved that this conformational change does not impact the multimeric state of EsaR. To better understand the mechanism of regulation by AHL, the final goal of this project was to examine the interactions which result in EsaR-responsiveness to AHL. Several individual amino acid substitutions were identified that cause EsaR to function in an AHL-independent manner, by which variants retain the ability to bind and block gene expression in the presence of AHL. These residues have been mapped onto a homology model of EsaR and their role has been examined in vitro. The ability of these EsaR* variants to bind AHL and an analysis of the effects individual mutations have on the overall conformation of the protein was performed. Overall this study has revealed several unique aspects of the quorum-sensing system in P. stewartii whereby gene expression is regulated at both low and high cell density. Studies were also initiated to examine the mechanism of AHL-responsiveness of EsaR. The mechanism by which AHL modulates most LuxR homologues remains elusive. The ability to purify EsaR +/- its cognate AHL may prove critical in elucidating this mechanism. / Ph. D.
4

Quorum sensing Rezeptorprotein LuxP – gentechnisches Design von LuxP-Derivaten zur Anwendung in der Biosensorik

Ihle, Karolina 20 December 2010 (has links)
Als Quorum sensing (QS) wird die Kommunikation zwischen Bakterien bezeichnet. Diese basiert auf kleinen Signalmolekülen, die Autoinducer (AI) genannt werden. Durch QS werden von Bakterien Verhaltensweisen wie Fähigkeit zur Symbiose, Virulenz, Produktion von Antibiotika und Bildung von Biofilmen reguliert. Die Kommunikation kann innerhalb einer Spezies (Intraspezies-Kommunikation) oder mehreren Spezies (Interspezies-Kommunikation) erfolgen. Gram-negative Bakterien kommunizieren über acetylierte Homoserinlaktone (AHL), Gram-positive Bakterien dagegen benutzen modifizierte Oligopeptide als Autoinducer. Für die Interspezies-Kommunikation dient der Autoinducer-2 (AI-2). AI-2 entsteht auf dem Weg der spontanen Zyklisierung von 4,5-Dihydroxy-2,3-Pentadion (DPD), der von LuxS synthetisiert wird. Die Universalität des AI-2 als Signalmoleküls basiert auf dessen chemischen Eigenschaften. Als biologisch aktive Formen von DPD gelten S-THMF-Borat (bei marinen Bakterien wie Vibrio harveyi) und R-THMF (z.B. bei Enterobakterien wie Escherichia coli oder Salmonella enterica Serovar Typhimurium). AI-2 wird bei allen Bakterien von einem periplasmatischen Rezeptor gebunden. S-THMF-Borat bindet spezifisch an den Rezeptor LuxP, R-THMF dagegen an den Rezeptor LsrR. Durch die Anbindung des AI-2 verändert sich die Konformation des Rezeptors, was als Signal über weitere Proteine in die Zelle weitergeleitet wird. In E. coli ist die Expression des Operons lsrACDBFGE von AI-2 abhängig. Der lsr-Promotor wird von dem Repressor LuxR, Phospo-AI-2 sowie dem cAMP-CRP-Komplex reguliert. In dieser Arbeit wurden die molekularbiologische Grundlagen zur Entwicklung eines AI-2-Biosensors gelegt. Es wurden mehrere Fusionskonstrukte des V. harveyi AI-2 Rezeptors LuxP sowie dessen Derivate mit veränderter Affinität zur AI-2 kreiert, in E. coli exprimiert und aufgereinigt. Auch Rezeptorproteine von Vibrio fischeri sowie E. coli konnten erfolgreich exprimiert werden. Die Expression der Proteine erfolgte in E. coli luxS- Deletionsstämmen, die hierfür konstruiert worden sind. Die AI-2-Rezeptorproteine werden in E. coli vorwiegend in Form von inclusion bodys exprimiert. Nur ein Teil des Proteins ist löslich und kann für die Aufreinigung unter nativen Bedingungen verwendet werden. Auf der Basis von E. coli luxS- Deletionsstämmen wurde ein Bioassay entwickelt, der für die Detektion von AI-2 verwendet werden kann. Hierfür wurden mehrere Reporterplasmide konstruiert, in denen das rot fluoreszierende Protein DsRed unter die Kontrolle des lsr-Promotors von E. coli kloniert wurden. Dabei konnte unter Verwendung einer dieser Reporterplasmide (pBRDsRed) sowie des luxS-Deletionsstammes KIB1 Bioassay-Bedingungen etabliert werden, die einen Nachweis von AI-2 ermöglichen. Die für den Assay benötigten AI-2-Moleküle wurden in vitro mithilfe der Enzyme Pfs und LuxS und S-Adenosyl-Homocystein (SAH) als Substrat hergestellt. Der entwickelte AI-2-Bioassay wurde für die Bestimmung der Bindeaktivität der V. harveyi LuxP-Derivate verwendet. Die resultierenden Ergebnisse wiesen eine hohe Reproduzierbarkeit (1,2 bis 11,3 % Standartabweichung) auf.
5

The Role of Autoinducer-2 in Escherichia coli Biofilm Formation and the Discovery of a Plant-derived Quorum Sensing Inhibitor

Niu, Chen 26 May 2006 (has links)
The objectives of this work are: 1) to determine whether plant essential oil components influence the ability of Escherichia coli and several Pseudomonas species to form biofilms, and inhibit bacterial quorum sensing; 2) to understand the role of autoinducer-2 (AI-2) in biofilm formation by E. coli W3110. The biofilm formation assays determined that cinnamon, cassia and citronella oils differentially affected growth-normalized biofilm formation by E. coli. Cinnamaldehyde (CA) also inhibited the swimming motility of E. coli. Subinhibitory concentrations of CA were effective at inhibiting two types of acyl homoserine lactone (HSL) mediated quorum sensing (QS), and also AI-2 mediated QS. Because CA is widely used in the food and flavor industries, its potential to affect bacterial QS regulated processes should be recognized. The role of AI-2 mediated QS expression in physiology of E. coli W3110 was pleiotropic, including carbon utilization, fimbriae production, and the biofilm development. Overall, the research presented in this dissertation supported the concept that QS, biofilm formation, and cell adhesion may be broadly correlated. The anti-biofilm and anti-QS capability of CA implies that plant essential oil components might be promising for preventing the formation of detrimental biofilms.
6

Application of Boronic Acids in Medicinal Chemistry (Inhibitors, Sensors)

Ni, Nanting 13 April 2010 (has links)
It is well known boronic acids have its unique chemistry and related applications in organic synthesis. The boronic acid functionally group also plays very important roles in medicinal chemistry and chemical biology. For example, boronic acids have been developed as potential therapeutic agents, chemical biology tools. All these applications are directly related to the unique electronic and chemical properties of the boronic acid group. Herein, several application of boronic acids have been studied: 1) several groups of compounds were found as bacterial quorum sensing inhibitors; 2) a boronate compound was developed as a probe for detecting reactive oxygen species (ROS); and 3) boronic acid-modified aptamers can be used for glycoprotein recognition.
7

Effect of Nutrition on In Vitro Biofilm Formation of Gastrointestinal Associated Microbes

Hokazono, Asuka 03 October 2013 (has links)
Gastrointestinal (GI) health is an important contributor to one’s overall well-being. In the past decade, the focus of this aspect of health has been on the organisms that inhabit the intestines: gut microbes. A concept central to understanding bacterial behavior for health or disease promotion is biological film (biofilm) formation. The predominant form of growth for bacteria is biofilm formation, an as yet poorly described phenomenon for gut microbes. In order to better understand bacterial behavior in response to nutrients that pass through the GI system, a high throughput system to assess biofilm formation was developed. Gastrointestinal-associated microbes, Escherichia coli and Enterococcus faecalis, were assayed for biofilm formation in 96-well plates after 24 hours of incubation. Nutrients, inter-and intrakingdom signaling molecules such as monosaccharides, calcium, insulin, endocannabinoids, and AI-1, AI-2 like signaling compounds, respectively, were added to cultures in order to test their effects on biofilm formation. Biofilm was quantified spectrophotometrically by the measurement of optical density of each well measured at 580nm following crystal violet staining of adherent biofilm. Values were expressed as means ± standard error of the mean (SEM); differences between means were assessed using t-testing and ANOVA using GraphPad Prism, with mean differences considered significant at P < 0.05. Results showed that biofilm formation by E. coli was enhanced by glucose, galactose, lactose, AI-1 like signaling compound and insulin at 50 and 100µU/ml, while AI-2 like compound and calcium inhibited biofilm formation. Biofilm formation by E. faecalis was also enhanced by AI-1 like compound and insulin at 50µU/ml in RPMI medium and inhibited in cultures grown in BHI medium or with added calcium. We conclude that gastrointestinal-associated microbes are influenced by nutrients as well as various factors, including the culture medium, signaling compounds, as well as host-signaling compounds such as insulin and calcium. This study provides a platform required for future studies involving nutrient effect on biofilm formation.
8

Caractérisation de métabolites secondaires isolés des branchies symbiotiques du bivalve Codakia orbicularis / Characterization of secondary metabolites of symbiotic gills of bivalve Codakia orbicularis

Goudou, Francesca 07 February 2017 (has links)
Codakia orbicularis est un mollusque bivalve appartenant à la famille des Lucinidae et établissant des symbioses avec des bactéries sulfo-oxydantes (symbiotes) au sein de ses branchies. Dans l’hypothèse où toute symbiose nécessite une régulation par des molécules de dialogue, une étude chimique exhaustive pourrait aboutir à la mise en évidence des métabolites impliqués. Le travail de ce manuscrit porte donc sur l'isolement de métabolites secondaires à partir des branchies de ce bivalve et sur l'évaluation de l'activité antibactérienne des molécules isolées. Douze composés ont été isolés des branchies de Codakia orbicularis et leurs structures ont été déterminées par les méthodes spectroscopiques usuelles. Parmi ces molécules, une seule est nouvelle et a été nommée orbicularisine. Elle présente un squelette indolone spirotetracyclique inédit. Parmi les molécules isolées, seules quatre d’entre elles présentent une activité antibactérienne à savoir le soufre S8, la 4-hydroxybenzaldéhyde et deux monoglycérolipides. L'orbicularisine s'est révélée inactive contre un panel de lignées cellulaires cancéreuses et de kinases. Le nouveau squelette de l’orbicularisine pourrait permettre d'aboutir à une nouvelle famille de molécules par synthèse organique et ainsi accroître la diversité moléculaire autour de ce motif inédit. Il sera également intéressant de déterminer l'origine des molécules isolées et de connaître leur(s) implication(s) dans la régulation des symbiotes du bivalve. Les résultats chimiques obtenus sur C. orbicularis et sur les Lucinidae en général sont intéressants puisque les espèces côtières appartenant aux bivalves ont été peu exploitées en chimie jusqu’à ce jour. / Codakia orbicularis is a bivalve mollusc belonging to the family Lucinidae and establishing symbiosis with sulfooxidizing bacteria (symbionts) within its gills. In the hypothesis that any symbiosis requires a regulation by molecules of dialogue, an exhaustive chemical study could lead to the demonstration of the metabolites involved. The work of this manuscript focuses on the isolation of secondary metabolites from the gills of this bivalve and on the evaluation of the antibacterial activity of the isolated molecules. Twelve compounds were isolated from the gills of Codakia orbicularis and their structures were determined by the usual spectroscopic methods. Of these molecules, only one is new and has been named orbicularisin. It presents an indolone spirotetracyclic skeleton unpublished. Among the isolated molecules, only four of them have antibacterial activity, namely sulfur S8, 4-hydroxybenzaldehyde and two monoglycerolipids. Orbicularisin has been shown to be inactive against a panel of cancer cell lines and kinases. The new skeleton of orbicularisin could lead to a new family of molecules by organic synthesis and thus increase the molecular diversity around this original motif. It will also be interesting to determine the origin of the isolated molecules and know their involvement (s) in the regulation of the bivalve symbionts. The chemical results obtained on C. orbicularis and on Lucinidae in general are interesting because the coastal species belonging to bivalves have been little exploited in chemistry to date.
9

Quorum Sensing and Microbial Interactions in Coral Black Band Disease and Coral-Associated Bacteria

Zimmer, Beth L 08 November 2012 (has links)
The black band disease (BBD) microbial consortium often causes mortality of reef-building corals. Microbial chemical interactions (i.e., quorum sensing (QS) and antimicrobial production) may be involved in the BBD disease process. Culture filtrates (CFs) from over 150 bacterial isolates from BBD and the surface mucopolysaccharide layer (SML) of healthy and diseased corals were screened for acyl homoserine lactone (AHL) and Autoinducer-2 (AI-2) QS signals using bacterial reporter strains. AHLs were detected in all BBD mat samples and nine CFs. More than half of the CFs (~55%) tested positive for AI-2. Approximately 27% of growth challenges conducted among 19 isolates showed significant growth inhibition. These findings demonstrate that QS is actively occurring within the BBD microbial mat and that culturable bacteria from BBD and the coral SML are able to produce QS signals and antimicrobial compounds. This is the first study to identify AHL production in association with active coral disease.
10

The Effects of Quorum Sensing and Temperature on the Soluble Proteome of Vibrio salmonicida

Massey, Christopher L 01 June 2016 (has links) (PDF)
Vibrio salmonicida causes cold-water vibriosis in salmon populations around the world and causes financial damage to fisheries designed to farm these salmon. Very little is known about the physiology of how V. salmonicida causes disease and measures to contain vibriosis are restricted to either vaccinating individual fish against disease or administering antibiotics when an outbreak is detected. These procedures are costly and increase the risk for selection of antibiotic-resistant V. salmonicida strains. A recent reoccurrence of outbreaks in Norwegian fisheries provided incentive to better understand the virulence mechanisms of V. salmonicida. In this thesis, a proteomic approach was used to identify proteins that were differentially expressed when cells were grown in vitro under simulated virulence conditions (i.e. 5˚C and in the presence of exogenously supplied autoinducer 3-oxo-hexanoyl-homoserine lactone). Some examples of proteins with significantly altered expression that stood out at as homologs of potential virulence factors were: an exported serine protease DegQ, a multi-drug transporter HlyD, and an outer membrane protein OmpU. The proteomic approach allowed us to identify large numbers of proteins that are expressed by V. salmonicida, facilitating hypothesis-driven research in order to support possible roles for some of these proteins in virulence

Page generated in 0.0387 seconds