• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the sets of real vectors recognized by finite automata in multiple bases

Brusten, Julien 08 June 2011 (has links)
This thesis studies the properties of finite automata recognizing sets of real vectors encoded in positional notation using an integer base. We consider both general infinite-word automata, and the restricted class of weak deterministic automata, used, in particular, as symbolic data structures for representing the sets of vectors definable in the first order additive theory of real and integer numbers. <br><br> In previous work, it has been established that all sets definable in the additive theory of reals and integers can be handled by weak deterministic automata regardless of the chosen numeration base. In this thesis, we address the reciprocal property, proving that the sets of vectors that are simultaneously recognizable in all bases, by either weak deterministic or Muller automata, are those definable in the additive theory of reals and integers. <br><br> Precisely, for weak deterministic automata, we establish that the sets of real vectors simultaneously recognizable in two multiplicatively independent bases are necessarily definable in the additive theory of reals and integers. For general automata, we show that the multiplicative independence is not sufficient, and we prove that, in this context, the sets of real vectors that are recognizable in two bases that do not share the same set of prime factors are exactly those definable in the additive theory of reals and integers. <br><br> Those results lead to a precise characterization of the sets of real vectors that are recognizable in multiple bases, and provide a theoretical justification to the use of weak automata as symbolic representations of sets. <br><br> As additional contribution, we also obtain valuable insight into the internal structure of automata recognizing sets of vectors definable in the additive theory of reals and integers.
2

Abstract Numeration Systems: Recognizability, Decidability, Multidimensional S-Automatic Words, and Real Numbers

Charlier, Emilie 07 December 2009 (has links)
In this doctoral dissertation, we studied and solved several questions regarding positional and abstract numeration systems. Each particular problem is the focus of a chapter. The first problem concerns the study of the preservation of recognizability under multiplication by a constant in abstract numeration systems built on polynomial regular languages. We obtained several results generalizing those from P. Lecomte and M. Rigo. The second problem we considered is a decidability problem, which was already studied, most notably, by J. Honkala and A. Muchnik. For our part, we studied this problem for two new cases: the linear positional numeration systems and the abstract numeration systems. Next, we focused on the extension to the multidimensional setting of a result of A. Maes and M.~Rigo regarding S-automatic infinite words. We obtained a characterization of multidimensional S-automatic words in terms of multidimensional (non-necessarily uniform) morphisms. This result can be viewed as the analogous of O. Salon's extension of a theorem of A. Cobham. Finally, generalizing results of P. Lecomte and M. Rigo, we proposed a formalism to represent real numbers in the general framework of abstract numeration systems built on languages that are not necessarily regular. This formalism encompasses in particular the rational base numeration systems, which have been recently introduced by S. Akiyama, Ch. Frougny, and J. Sakarovitch. Finally, we ended with a list of open questions in the continuation of this work./Dans cette dissertation, nous étudions et résolvons plusieurs questions autour des systèmes de numération abstraits. Chaque problème étudié fait l'objet d'un chapitre. Le premier concerne l'étude de la conservation de la reconnaissabilité par la multiplication par une constante dans des systèmes de numération abstraits construits sur des langages réguliers polynomiaux. Nous avons obtenus plusieurs résultats intéressants généralisant ceux de P. Lecomte et M. Rigo. Le deuxième problème auquel je me suis intéressée est un problème de décidabilité déjà étudié notamment par J. Honkala et A. Muchnik et ici décliné en deux nouvelles versions : les systèmes de numération de position linéaires et les systèmes de numération abstraits. Ensuite, nous nous penchons sur l'extension au cas multidimensionnel d'un résultat d'A. Maes et de M. Rigo à propos des mots infinis S-automatiques. Nous avons obtenu une caractérisation des mots S-automatiques multidimensionnels en termes de morphismes multidimensionnels (non nécessairement uniformes). Ce résultat peut être vu comme un analogue de l'extension obtenue par O. Salon d'un théorème de A. Cobham. Finalement, nous proposons un formalisme de la représentation des nombres réels dans le cadre général des systèmes de numération abstraits basés sur des langages qui ne sont pas nécessairement réguliers. Ce formalisme englobe notamment le cas des numérations en bases rationnelles introduits récemment par S. Akiyama, Ch. Frougny et J. Sakarovitch. Nous terminons par une liste de questions ouvertes dans la continuité de ce travail.

Page generated in 0.0735 seconds