• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automata groups

Muntyan, Yevgen 16 January 2010 (has links)
This dissertation is devoted to the groups generated by automata. The first part of the dissertation deals with L-presentations for such groups. We describe the sufficient condition for an essentially free automaton group to have an L-presentation. We also find the L-presentation for several other groups generated by three-state automata, and we describe the defining relations in the Grigorchuk groups G_w. In case when the sequence w is almost periodic these relations provide an L-presentation for the group G_w. We also describe defining relations in the series of groups which contain Grigorchuk-Erschler group and the group of iterated monodromies of the polynomial z^2 + i. The second part of the dissertation considers groups generated by 3-state automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic groups generated by 3-state automata over the 2-letter alphabet. We also study the groups generated by 2-state automata over the 3-letter alphabet and obtain a number of classification results for this class of group.
2

Asymptotic, Algorithmic and Geometric Aspects of Groups Generated by Automata

Savchuk, Dmytro M. 14 January 2010 (has links)
This dissertation is devoted to various aspects of groups generated by automata. We study particular classes and examples of such groups from different points of view. It consists of four main parts. In the first part we study Sushchansky p-groups introduced in 1979 by Sushchansky in "Periodic permutation p-groups and the unrestricted Burnside problem". These groups represent one of the earliest examples of Burnside groups and, at the same time, show the potential of the class of groups generated by automata to contain groups with extraordinary properties. The original definition is translated into the language of automata. The original actions of Sushchansky groups on p- ary tree are not level-transitive and we describe their orbit trees. This allows us to simplify the definition and prove that these groups admit faithful level-transitive actions on the same tree. Certain branch structures in their self-similar closures are established. We provide the connection with so-called G groups introduced by Bartholdi, Grigorchuk and Suninc in "Branch groups" that shows that all Sushchansky groups have intermediate growth and allows us to obtain an upper bound on their period growth functions. The second part is devoted to the opposite question of realization of known groups as groups generated by automata. We construct a family of automata with n states, n greater than or equal to 4, acting on a rooted binary tree and generating the free products of cyclic groups of order 2. The iterated monodromy group IMG(z2+i) of the self-map of the complex plain z -> z2 + i is the central object of the third part of dissertation. This group acts faithfully on the binary rooted tree and is generated by 4-state automaton. We provide a self-similar measure for this group giving alternative proof of its amenability. We also compute an L-presentation for IMG(z2+i) and provide calculations related to the spectrum of the Markov operator on the Schreier graph of the action of IMG(z2 + i) on the orbit of a point on the boundary of the binary rooted tree. Finally, the last part is discussing the package AutomGrp for GAP system developed jointly by the author and Yevgen Muntyan. This is a very useful tool for studying the groups generated by automata from the computational point of view. Main functionality and applications are provided.

Page generated in 0.0661 seconds