• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Conjecturing Approach to the Discrete Riemann Hypothesis

Bradford, Alexander 01 January 2016 (has links)
This paper is a study on some upper bounds of the Mertens function, which is often considered somewhat of a ``mysterious" function in mathematics and is closely related to the Riemann Hypothesis. We discuss some known bounds of the Mertens function, and also seek new bounds with the help of an automated conjecture-making program named CONJECTURING, which was created by C. Larson and N. Van Cleemput, and inspired by Fajtowicz's Dalmatian Heuristic. By utilizing this powerful program, we were able to form, validate, and disprove hypotheses regarding the Mertens function and how it is bounded.
2

Automated Conjecturing Approach for Benzenoids

Muncy, David 01 January 2016 (has links)
Benzenoids are graphs representing the carbon structure of molecules, defined by a closed path in the hexagonal lattice. These compounds are of interest to chemists studying existing and potential carbon structures. The goal of this study is to conjecture and prove relations between graph theoretic properties among benzenoids. First, we generate conjectures on upper bounds for the domination number in benzenoids using invariant-defined functions. This work is an extension of the ideas to be presented in a forthcoming paper. Next, we generate conjectures using property-defined functions. As the title indicates, the conjectures we prove are not thought of on our own, rather generated by a process of automated conjecture-making. This program, named Cᴏɴᴊᴇᴄᴛᴜʀɪɴɢ, is developed by Craig Larson and Nico Van Cleemput.

Page generated in 0.1059 seconds