• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic analysis of magnetic resonance images of speech articulation

Raeesy, Zeynabalsadat January 2013 (has links)
Magnetic resonance imaging (MRI) technology has facilitated capturing the dynamics of speech production at fine temporal and spatial resolutions, thus generating substantial quantities of images to be analysed. Manual processing of large MRI databases is labour intensive and time consuming. Hence, to study articulation on large scale, techniques for automatic feature extraction are needed. This thesis investigates approaches for automatic information extraction from an MRI database of dynamic articulation. We first study the articulation by observing the pixel intensity variations in image sequences. The correspondence between acoustic segments and images is established by forced alignment of speech signals recorded during the articulation. We obtain speaker-specific typical phoneme articulations that represent general articulatory configurations in running speech. Articulation dynamics are parametrised by measuring the magnitude of change in intensities over time. We demonstrate a direct correlation between the dynamics of articulation thus measured and the energy of the generated acoustic signals. For more sophisticated applications, a parametric description of vocal tract shape is desired. We investigate different shape extraction techniques and present a framework that can automatically identify and extract the vocal tract shapes. The framework incorporates shape prior information and intensity features in recognising and delineating the shape. The new framework is a promising new tool for automatic identification of vocal tract boundaries in large MRI databases, as demonstrated through extensive assessments. The segmentation framework proposed in this thesis is, to the best of our knowledge, novel in the field of speech production. The methods investigated in this thesis facilitate automatic information extraction from images, either for studying the dynamics of articulation or for vocal tract shape modelling. This thesis advances the state-of-the-art by bringing new perspectives to studying articulation, and introducing a segmentation framework that is automatic, does not require extensive initialisation, and reports a minimum number of failures.
2

Atlas-based Segmentation of Temporal Bone Anatomy

Liang, Tong 28 July 2017 (has links)
No description available.
3

Etude de la méthode de Boltzmann sur réseau pour la segmentation d'anévrismes cérébraux / Study of the lattice Boltzmann method application to cerebral aneurysm segmentation

Wang, Yan 25 July 2014 (has links)
L'anévrisme cérébral est une région fragile de la paroi d'un vaisseau sanguin dans le cerveau, qui peut se rompre et provoquer des saignements importants et des accidents vasculaires cérébraux. La segmentation de l'anévrisme cérébral est une étape primordiale pour l'aide au diagnostic, le traitement et la planification chirurgicale. Malheureusement, la segmentation manuelle prend encore une part importante dans l'angiographie clinique et elle est devenue couteuse en temps de traitement étant donné la gigantesque quantité de données générées par les systèmes d'imagerie médicale. Les méthodes de segmentation automatique d'image constituent un moyen essentiel pour faciliter et accélérer l'examen clinique et pour réduire l'interaction manuelle et la variabilité inter-opérateurs. L'objectif principal de ce travail de thèse est de développer des méthodes automatiques pour la segmentation et la mesure des anévrismes. Le présent travail de thèse est constitué de trois parties principales. La première partie concerne la segmentation des anévrismes géants qui contiennent à la fois la lumière et le thrombus. La méthode consiste d'abord à extraire la lumière et le thrombus en utilisant une procédure en deux étapes, puis à affiner la forme du thrombus à l'aide de la méthode des courbes de niveaux. Dans cette partie, la méthode proposée est également comparée à la segmentation manuelle, démontrant sa bonne précision. La deuxième partie concerne une approche LBM pour la segmentation des vaisseaux dans des images 2D+t et de l'anévrisme cérébral dans les images en 3D. La dernière partie étudie un modèle de segmentation 4D en considérant les images 3D+t comme un hypervolume 4D et en utilisant un réseau LBM D4Q81, dans lequel le temps est considéré de la même manière que les trois autres dimensions pour la définition des directions de mouvement des particules dans la LBM, considérant les données 3D+t comme un hypervolume 4D et en utilisant un réseau LBM D4Q81. Des expériences sont réalisées sur des images synthétiques d'hypercube 4D et d'hypersphere 4D. La valeur de Dice sur l'image de l'hypercube avec et sans bruit montre que la méthode proposée est prometteuse pour la segmentation 4D et le débruitage. / Cerebral aneurysm is a fragile area on the wall of a blood vessel in the brain, which can rupture and cause major bleeding and cerebrovascular accident. The segmentation of cerebral aneurysm is a primordial step for diagnosis assistance, treatment and surgery planning. Unfortunately, manual segmentation is still an important part in clinical angiography but has become a burden given the huge amount of data generated by medical imaging systems. Automatic image segmentation techniques provides an essential way to easy and speed up clinical examinations, reduce the amount of manual interaction and lower inter operator variability. The main purpose of this PhD work is to develop automatic methods for cerebral aneurysm segmentation and measurement. The present work consists of three main parts. The first part deals with giant aneurysm segmentation containing lumen and thrombus. The methodology consists of first extracting the lumen and thrombus using a two-step procedure based on the LBM, and then refining the shape of the thrombus using level set technique. In this part the proposed method is also compared with manual segmentation, demonstrating its good segmentation accuracy. The second part concerns a LBM approach to vessel segmentation in 2D+t images and to cerebral aneurysm segmentation in 3D medical images through introducing a LBM D3Q27 model, which allows achieving a good segmentation and high robustness to noise. The last part investigates a true 4D segmentation model by considering the 3D+t data as a 4D hypervolume and using a D4Q81 lattice in LBM where time is considered in the same manner as for other three dimensions for the definition of particle moving directions in the LBM model.

Page generated in 0.125 seconds