1 |
Machine Learning for Traffic Control of Unmanned Mining Machines : Using the Q-learning and SARSA algorithms / Maskininlärning för Trafikkontroll av Obemannade Gruvmaskiner : Med användning av algoritmerna Q-learning och SARSAGustafsson, Robin, Fröjdendahl, Lucas January 2019 (has links)
Manual configuration of rules for unmanned mining machine traffic control can be time-consuming and therefore expensive. This paper presents a Machine Learning approach for automatic configuration of rules for traffic control in mines with autonomous mining machines by using Q-learning and SARSA. The results show that automation might be able to cut the time taken to configure traffic rules from 1-2 weeks to a maximum of approximately 6 hours which would decrease the cost of deployment. Tests show that in the worst case the developed solution is able to run continuously for 24 hours 82% of the time compared to the 100% accuracy of the manual configuration. The conclusion is that machine learning can plausibly be used for the automatic configuration of traffic rules. Further work in increasing the accuracy to 100% is needed for it to replace manual configuration. It remains to be examined whether the conclusion retains pertinence in more complex environments with larger layouts and more machines. / Manuell konfigurering av trafikkontroll för obemannade gruvmaskiner kan vara en tidskrävande process. Om denna konfigurering skulle kunna automatiseras så skulle det gynnas tidsmässigt och ekonomiskt. Denna rapport presenterar en lösning med maskininlärning med Q-learning och SARSA som tillvägagångssätt. Resultaten visar på att konfigureringstiden möjligtvis kan tas ned från 1–2 veckor till i värsta fallet 6 timmar vilket skulle minska kostnaden för produktionssättning. Tester visade att den slutgiltiga lösningen kunde köra kontinuerligt i 24 timmar med minst 82% träffsäkerhet jämfört med 100% då den manuella konfigurationen används. Slutsatsen är att maskininlärning eventuellt kan användas för automatisk konfiguration av trafikkontroll. Vidare arbete krävs för att höja träffsäkerheten till 100% så att det kan användas istället för manuell konfiguration. Fler studier bör göras för att se om detta även är sant och applicerbart för mer komplexa scenarier med större gruvlayouts och fler maskiner.
|
2 |
Monitored Neural Networks for Autonomous Articulated Machines / Monitored Neural Network for Curvature Steering of Autonomous Articulated MachinesBeckman, Erik, Harenius, Linus January 2020 (has links)
Being able to safely control autonomous heavy machinery is of uttermost importance for the conversion of traditional machines to autonomous machines. With the continuous growth of autonomous vehicles around the globe, an increasing effort has been put into certifying autonomous vehicles in terms of reliability and safety. In this thesis, we will investigate the problem with a deviation from the planned path for an autonomous hauler from Volvo Construction Equipment. The autonomous hauler has an error within the kinematic model, the feed-forward curvature-steering controller, due to a slip-effect that comes with the third wheel-axle. The deviation can especially be seen in sharp curves, where the deviation needs to be decreased in order to make the autonomous hauler more dependable and achieve an increased accuracy when following any given path. The aim of the thesis is to develop a fully functional Artificial Neural Network that has a new steering angle as output. The hypothesis for this thesis is to use an ANN to mimic the steering of a human driver, since a real driver compensates for the slipping behavior; both because the operator knows where on the road the machine is and also in the way that a human thinks many steps ahead whilst driving. This proposed ANN will have a monitor function which ensures that the steering angle command operates within its boundaries. Hence this thesis implies that it is indeed possible to ensure that the ANN performs reliably with the help of a monitor function in a simulated environment and can thus be used in dependable systems.
|
Page generated in 0.0878 seconds