• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 68
  • 25
  • 13
  • 12
  • 9
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 298
  • 71
  • 54
  • 44
  • 35
  • 34
  • 30
  • 30
  • 27
  • 24
  • 24
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An investigation into the molecular basis of secondary vascular tissue formation in poplar and arabidopsis with an emphasis on the role of auxin and the auxin response factor MONOPTEROS

Johnson, Lee 11 1900 (has links)
The differentiation of plant vascular tissue is regulated by plant hormones and transcription factors. One of the key plant hormones involved in this process is auxin. Auxin signals are mediated by auxin response factor transcription factors (ARFs). These transcription factors are involved in the perception of auxin signals and the subsequent activation or deactivation of suites of downstream genes. Based on its mutant phenotype, one of the most interesting members of this family is the ARF MONOPTEROS (MP). This thesis investigates the role played by MP in secondary vascular differentiation, as well as taking a look at other molecular aspects of secondary vascular differentiation, with a focus on the model plants Arabidopsis thaliana and poplar (Populus trichocarpa and hybrid poplar). A dexamethasone inducible RNAi silencing strategy was developed, and transgenic Arabidopsis lines produced. When silencing was induced in these lines from germination, a phenotype closely resembling the mp mutant was observed. When MP silencing was induced in bolting stems, early senescence, as well as a dramatic reduction in interfascicular fibre production was observed, and these stems were thinner and less rigid than empty vector controls. RNA from these stems was isolated and used in a global transcript profiling microarray experiment. This experiment showed that several auxin-related genes, as well as several transcription factors, were differentially regulated in response to MP silencing. Because Arabidopsis is not a typical woody plant, further investigation into the role played by MP in wood formation was done using the model tree poplar. A BLAST search of a poplar xylem EST database identified a single promising partial sequence. Based on this sequence information, a poplar MP homolog was isolated and named PopMP1. The full-length sequence of this gene demonstrated remarkable structural conservation when compared with that of Arabidopsis. Subsequent complete sequencing of the poplar genome revealed a second copy of the MP gene in poplar and named PopMP2. Expression profiling across a range of tissues suggests that subfunctionalization has occurred between the two copies. Overexpression transgenic lines for PoptrMP1 were developed. AtHB8 is known to be regulated by MP in Arabidopsis, and a poplar HB8 homolog was upregulated in the transgenic lines. However, no obvious physical phenotype in these lines was apparent. To investigate the transcriptome-wide changes associated with initiation of cambium formation in poplar stems, a global transcript profiling experiment was performed. Out of 15400 genes tested, 2320 met an arbitrary cutoff of >1.3 fold and p-value <0.05 and were labeled differentially expressed (DE). These included several transcription factors and showed remarkable similarity to analogous data from Arabidopsis. The conclusions drawn from this thesis support the hypothesis that MP plays roles in later development, and do not rule out the possibility that MP is directly involved in wood development. The data reported also offer a large number of candidate for further investigation into the genetic control of wood development.
72

Die Rolle von Phosphoinositiden bei der Auxinsignalleitung von Arabidopsis thaliana / The role of phosphoinositides in auxin signaling in Arabidopsis thaliana

Werner, Stephanie 20 February 2013 (has links)
Auxin ist eines der wichtigsten Phytohormone für das pflanzliche Wachstum und die Entwicklung und ein entscheidender Regulator des Gravitropismus. Für alle auxinvermittelten Prozesse ist die spezifische Verteilung des Hormons innerhalb der Gewebe relevant. Diese wird durch spezialisierte Auxintransporter umgesetzt, von denen besonders die PIN-Auxinexporter entscheidend sind. PINs lokalisieren in einer Zelle in den meisten Fällen polar an einer Seite der Plasmamembran um einen strikten Auxinfluss in das Zielgewebe zu erzeugen. Diese PIN-Verteilung muss dynamisch sein, damit der Auxinfluss zum Beispiel im Falle gravitroper Stimulation zügig in ein anderes Gewebe umgeleitet werden kann. Die schnelle Umverteilung der PINs hängt unter anderem von der Zusammensetzung und Funktionalität der Plasmamembran ab. In früheren Arbeiten konnte gezeigt werden, dass PIs eine wichtige Funktion bei der Vesikelbildung und der Rekrutierung der dafür nötigen Proteinmaschinerie einnehmen. In dieser Arbeit wurde getestet, ob PIs eine Rolle bei der PIN-Verteilung spielen. Pflanzen mit Störungen im PI-Syntheseweg wurden auf ihre gravitropen Krümmungseigenschaften und ihre PIN- und Auxinverteilung untersucht. Eine pip5k1 pip5k2-Doppelmutante zeigte neben verminderter gravitroper Krümmung auch eine gestörte PIN-Lokalisation als Defekt bei der Auxinverteilung, da sich Auxin mittels eines DR5::GUS-Reporters in der Wurzelspitze der Mutanten nicht nachweisen ließ. Diese Experimente lieferten daher wichtige Hinweise darauf, dass PtdIns(4,5)P2 eine Rolle bei der Lokalisierung und Umverteilung und damit der Regulierung des Auxinflusses spielen. PtdIns(4,5)P2 ist nicht nur als intaktes Lipid für viele Signalwege in der Pflanze relevant. Auch die abgeleiteten IPPs spielen eine wichtige Rolle. In der Kristallstruktur des Auxinrezeptors TIR1 wurde ein InsP6-Kofaktor beschrieben, dessen Funktion aber bisher unklar blieb. Im Rahmen dieser Arbeit wurden ipk1-1-Mutanten und InsP 5-Ptase-Pflanzen mit verminderten Gehalten an InsP6 auf Auxin-vermittelte Prozesse wie gravitrope Krümmung und die Verteilung von Auxin und dessen Transporter untersucht. Weiterhin wurde die Transkription auxinabhängiger Gene getestet. Dazu wurden diese Pflanzenlinien gravitrop stimuliert und die Transkriptgehalte in der Wurzelspitze nach dieser Stimulation mittels einer Transkript-Arrayanalyse mit Pflanzen des Wildtyps verglichen. Die Ergebnisse zeigten, dass die gravitrope Stimulation in Wildtyppflanzen eine deutliche Veränderung der Genexpression hervorruft, die sich in ipk1-1-Mutanten und die InsP 5-Ptase-Pflanzen nicht beobachten ließ. Verifizierungen ausgewählter Gene mittels qPCR bestätigten die Befunde. Zusammenfassend zeigen die Ergebnisse, dass sowohl PIs, als auch abgeleitete IPPs, im besonderen InsP6, eine Rolle bei auxinvermittelten Prozessen spielen.
73

Modelling the auxin-mediated vein formation system in plant leaves

Slingerland, Martin Jacob (Marc), University of Lethbridge. Faculty of Arts and Science January 2007 (has links)
The plant hormone auxin is involved in a wide range of developmental phenomena in plants. It carries out many of its effects through a signalling network involving the regulation of specific genes, including those involved in its own polar transport between cells. These transporters are able to be redistributed between cell faces, causing the asymmetric auxin transport that is a key requirement for the formation of vein patterns in leaves. In this thesis I describe the development of a biochemical kinetics-based model of auxin signalling and transport in a single cell, which displays biologically plausible responses to auxin application. The single-cell model then serves as the basis for a multicell model of auxin-mediated vein formation at a very early stage of leaf formation in Arabidopsis thaliana. / ix, 73 leaves : ill. ; 29 cm.
74

An investigation into the putative functions of the tobacco Annexin Ntann12

Oukouomi Lowe, Yves 18 June 2010 (has links)
Les annexines sont définies comme étant des protéines qui se lient de manière calcium-dépendante aux phospholipides membranaires chargés négativement. Elles ont été associées à différents processus biologiques tels les réponses des plantes aux stress biotiques et abiotiques. Nous avons identifié une annexine végétale, appelée Ntann12, dont l’expression est induite après infection des plantes par la bactérie Rhodococcus fascians. <p> Ntann12 possède les domaines caractéristiques des annexines et se lie aux phospholipides chargés négativement, de manière calcium-dépendante. L’expression de Ntann12 est très abondante dans les cellules différentiées des racines, où la protéine a été détectée par immunolocalisation dans le cytosol et dans le noyau. Des analyses par western blot ont montré que l’accroissement relatif de la quantité de protéines liées aux membranes est positivement corrélé à l’augmentation de la concentration en Ca2+. <p> Au niveau physiologique, l'expression de Ntann12 est induite par l’apport exogène d’auxine. Elle est contrôlée dans les racines par un signal induit par la lumière, et provenant des parties aériennes. Le transport polaire de l'auxine a été identifié comme étant le processus cellulaires nécessaires à l'expression de Ntann12 dans les racines. En outre, cette expression est réprimée par les stress salin, osmotique et hydrique. Ces résultats suggèrent que l’annexine Ntann12 est impliquée dans le métabolisme de l’auxine.<p><p>/<p><p>Annexins are defined as calcium-binding proteins, and they have been associated in plants with different biological processes such as responses to biotic and abiotic stress. Ntann12 expression is induced upon infection of tobacco plant by R. fascians. <p> Ntann12 possesses the conserved annexin repeat with the sequence for type II Ca2+-binding site and recombinant as well as native Ntann12 binds to negatively charged phospholipids in a Ca2+-dependent manner. It is mainly expressed in root differentiated cells where the protein was immunolocalized in the cytosol and in the nucleus. Ntann12 was examined by western blot in both microsomal and cytosolic fractions from tobacco roots cells, and was detected in both the cytosol and microsome. The relative increase of Ntann12 proteins associated with the microsome is coupled with an increase in Ca2+ concentration.<p> At the physiological level, Ntann12 expression is induced by exogenous application of auxin, and was found to be regulated in the root system by a light-induced signal coming from plant aerial part and polar auxin transport was identified to be the cellular process required for Ntann12 expression in root cells. Furthermore, Ntann12 expression is down-regulated by salt, osmotic and water stress. These results collectively suggest that the annexin Ntann12 is implicated in auxin metabolism. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
75

Mechanismus přenosu auxinu přes plazmatickou membránu prostřednictvím proteinů PIN / Mechanism of auxin transport across plasma membrane through PIN auxin efflux carriers

Lefnar, Radek January 2017 (has links)
Phytohormone auxin and its directional distribution plays an essential role in the regulation of numerous processes during vegetative and reproductive plant development. Regulation of the expression, localization and activity of the PIN-FORMED (PIN) proteins is important for proper polar auxin transport in plant tissues. PIN proteins have been described as the major auxin efflux carriers regulating auxin's directional flow to build up gradients that provide information for the coordination of plant development. PIN protein structure topology prediction through bioinformatic analysis is still insufficient to understand their transport mechanism. Experimental analysis of PIN protein domains can provide valuable insight into understanding their role in mediating auxin transport. In this study, the C-terminal part of PINs have been modified by gradual trimming to determine the existence of relevant functional domains, which could be important for auxin transport. Seven modified PIN proteins from Arabidopsis thaliana and Nicotiana tabacum were prepared. Transiently transformed tobacco cell line Bright Yellow-2 (BY-2) was used to monitor differences in PIN transport activity. This approach allowed indirect monitoring of intracellular auxin levels using the DR5 reporter system. Transiently expressed...
76

Transport auxinu v Arabidopsis thaliana: od celistvé rostliny k buněčné kultuře / Auxin Transport in Arabidopsis thaliana: From the whole plant to suspension cultured cells

Seifertová, Daniela January 2010 (has links)
in English Plants with their sessile life-style are exposed to many stimuli from environment. They have developed mechanisms how to coordinate their growth and development, which allows them to survive sometimes in very difficult conditions. Plant hormones are one of the most important regulators of this signal transduction. Auxins, as the oldest known group of plant hormones, play important role in many physiological processes in plants. To allow perceiving the information in every single cell, auxin molecule is transported by cell-to-cell manner. Auxin molecules enter the cell by passive diffusion or by active uptake by auxin influx carriers. To reach the next cell, they are transported actively out of the cell by auxin efflux carriers. Athough active auxin transport has been studied for almost four decades, past two decades contributed to the identification and characterization of particular auxin carriers remarkably. This thesis contributes to the knowledge on the auxin efflux and influx carriers and their involvement in the processes occurring from a single cell level to the level of a whole plant. Firstly, it brings detailed description of auxin transport characteristics in Arabidopsis thaliana cell suspension cells (Ath cells). Secondly, it shows that the overproduction of PIN1 auxin efflux...
77

Analýza komplexity procesů souvisejících s auxinem a jejich regulace / Analyzing the complexity of auxin-related processes and their regulation

Simon, Sibu January 2011 (has links)
Phytohormone auxin plays an important role in various aspects of plant growth and development. The necessary concentration maxima at the region of its action are achieved by auxin metabolism, passive diffusion of auxin molecules across plasma membrane and by the carrier-mediated auxin transport, as well as by modulation of these processes. In our study we used a group of compounds structurally related to major endogenous auxin indole-3-acetic acid, as well as synthetic auxins 2,4-dichlorophenoxy acetic acid (2,4- D) and naphthalene-1-acetic acid (NAA). We aimed to characterize the auxin specificity of developmentally important processes such as carrier-mediated auxin transport, and 'genomic' (transcriptional) and 'non-genomic' (transcriptional) auxin signaling. In addition to the characterization of these compounds we also hoped to get an insight into the complex regulatory mechanism of auxin-related processes and to possibly find a particular compound with distinct behavior towards particular processes. By making use of such compounds and other molecular tools we aimed to analyze the mechanism of 'non-genomic' auxin signaling, to understand the mode of action of FM (Fei Mao) styryl dyes on the dynamics of membrane- localized auxin transporters, and to study the involvement of other phytohormones...
78

Protein kinázy typu AGC a jejich role při regulaci transportu auxinu / The role of AGC protein kinases in the regulation of auxin transport

Martincová, Marie January 2011 (has links)
There are several members of the subfamily of plant AGC kinases (AGCVIII) suggested to play a role in the regulation of auxin transport, protein kinases PID, WAG1, WAG2 and D6. They all have been shown to perform regulatory phosphorylation of PIN auxin efflux carriers. It is the asymmetrical subcellular localization of PIN proteins that enables the auxin molecules to be transported through a tissue in a polar manner. Regulation of their expression, localization or activity can therefore affect the quantity and directionality of auxin transport. This thesis is focused on better understanding of the PID-mediated regulation of auxin transport. The auxin accumulation as well as the localization of PIN and PID proteins has been studied using stable and transient expression of Arabidopsis thaliana PID in tobacco cell line BY-2. As shown here, the activity of PID does not enhance the activity of PINs, but still it has a positive effect on auxin efflux by increasing the amount of PIN proteins on the plasma membrane. Results presented here suggest that PID-mediated phosphorylation of PIN proteins most likely promotes their exocytosis from endosomal compartments towards the plasma membrane. Using transient co-expression of PID kinase mutated in its ATP-binding site and PIN1-RFP it was shown that functional...
79

Role auxinu u streptofytních řas / The role of auxin in streptophyte algae

Schmidt, Vojtěch January 2021 (has links)
The phytohormone auxin is an important morphogen with an essential role in the development of land plants, where mechanisms of its action are well described. However, its role in green algae is poorly understood. Land plants are part of the phylum Streptophyta together with six closely related groups of predominantly freshwater green algae (charophytes). So far, the knowledge about the evolutionary origins of auxin action mechanism is mainly based on genomic information, and much less on experimental findings. In this work, the presence of auxin, its precursor, and catabolism products were shown in representative species of charophytes with varying levels measured compounds both produced endogenously and into the culture media. Thus, we gained a comprehensive insight into the possible strategies of auxin homeostasis across the non-land plant streptophytes. Also, an effect of exogenous auxin on the cell morphology and culture growth of the desmid Closterium was investigated. Image analysis of IAA-treated cells revealed a rather pleiotropic effect on cell morphology. The culture growth was inhibited by IAA. Additionally, IAA induced malformations in cell shape, and the extent of this phenomenon across individual cultures was dependent on the culture growth status. Lastly, we optimized the method of...
80

Organogenesis in Vitro under Altered Auxin Signaling Conditions

Smirnova, Tatiana 27 November 2013 (has links)
The ratio of auxin to cytokinin determines de novo organogenesis in plants. Relatively little is known about the effect of genetically altered auxin signaling on in vitro organogenesis. Here, callusogenesis, shoot, and root formation were studied in loss- (LOF) and gain-of-function (GOF) alleles in two phylogenetically related Auxin Response Factors (ARFs), MONOPTEROS (MP/ARF5) and NON-PHOTOTROPHIC HYPOCOTYL 4 (NPH4/ARF7). Reduced MP activity greatly diminished shoot regeneration, and partially diminished callusogenesis and root formation. LOF in NPH4 strongly decreased callusogenesis, and mildly decreased shoot and root regeneration in particular categories of explants. By contrast, organogenesis responses were strongly increased in aerial explants carrying the GOF transgene dMP. Thus, both MP and NPH4 seem to act as positive regulators of certain organogenesis processes and the GOF dMP transgene may be of interest for stimulating organogenesis in plant species with poor regeneration properties. Also, organogenesis in vitro may reveal unknown developmental ARF functions.

Page generated in 0.0607 seconds