• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Accuracy in Logarithmic Multiplication using Operand Decomposition

Venkataraman, Mahalingam 28 March 2005 (has links)
The arithmetic operations such as multiplication and division in binary number system are computationally complex in terms of area, delay and power. Logarithmic Number Systems (LNS) offer a viable alternative combining the simplicity of fixed point number systems and the precision of floating point number systems. However, the computations in LNS result in some loss of accuracy and thus, are limited to mostly signal processing applications; where in certain amount of error is tolerable. In LNS, the cost of computations can be tradeoff with the level of accuracy needed. The Mitchell algorithm proposed incite[mitchell], is a simple approach commonly used for logarithmic multiplication. The method involves a high error margin due to a piecewise straight line approximation of the logarithm curve. Thus, several methods have been proposed in the literature for improving the accuracy of Mitchell's algorithm. In this thesis, we propose a new method for improving the accuracy of Mitchell's logarithmic multiplication using operand decomposition. The operand decomposition process decreases the number of bits with the value of '1' in the multiplicands and reduces the amount of approximation. The proposed method brings down the average error percentage of Mitchell's logarithmic multiplication by around 45%. It can be combined with previous methods to further improve the accuracy. Experimental results are presented to show that both the error range and the average error percentage can be significantly improved by using operand decomposition.

Page generated in 0.0324 seconds