Spelling suggestions: "subject:"avidinbiotin"" "subject:"avidinabiotina""
1 |
Der Effekt von Sirolimus auf die reaktive Zellproliferation und Apoptose in einem humanen ex vivo Restenose-ModellZellmann, Svenja, January 2007 (has links)
Ulm, Univ., Diss., 2007.
|
2 |
Biotinylation and high affinity avidin capture as a strategy for LC-MS based metabolomicsRhönnstad, Sofie January 2010 (has links)
<p>Metabolites, small endogenous molecules existing in every living cell, tissue or organism, play a vital role for maintaining life. The collective group of all metabolites, the metabolome, is a consequence of the biochemistry and biochemical pathways that a cell or tissue uses to promote survival. Analysis of the metabolome can be done to reveal changes of specific metabolites which can be a manifestation, a reason or a consequence of for example a disease. The physical chemical diversity amongst these components is tremendous and it poses a large analytical challenge to measure and quantify all of them. Targeting sub groups of the metabolome such as specific functional classes has shown potential for increasing metabolite coverage. Group selective labeling with biotin-tags followed by high affinity avidin capture is a well established purification strategy for protein purification.</p><p>The purpose with this project is to explore if it is possible to transfer the avidin biotin approach to metabolomics and use this method for small molecules purification. Specifically, this investigation aims to see if it is achievable to make a biotinylation of specific functional groups, to increase the sensitivity through reduction of sample complexity in liquid chromatography mass spectrometry metabolomics analyses after high affinity avidin capture. By purifying the analyte of interest and thereby reducing the sample complexity there will be a reduction in ion suppression. The aim is to increase the analytical sensitivity through a reduction in ion suppression during liquid chromatography mass spectrometry analysis.</p><p>Delimitations have been done to only investigate the possibility to obtain a biotinylation of primary amines and amides. As model compounds phenylalanine, spermidine, histamine and nicotinamide have been selected.</p><p>The result from this study indicates that it is possible to increase metabolite coverage through biotin labeling followed by high affinity avidin capture. It is a gain in analytical sensitivity of selected model compounds when comparing biotinylation strategy with a control nonbiotinylation approach in a complex sample. A broader study of additional model compounds and a method development of this strategy are necessary to optimize a potential future method.</p>
|
3 |
On-chip manipulation and positioning of biomolecules with magnetic beadsPanhorst, Michael. Unknown Date (has links) (PDF)
University, Diss., 2005--Bielefeld.
|
4 |
Protein-Glycopolymer Biohybrid Structures Based on Molecular Recognition Processes for Biomedical ApplicationsEnnen, Franka 11 December 2014 (has links)
The design of versatile biohybrid nanosized materials has revealed itself as a promising avenue towards biomedical applications in today´s life sciences. In this regard the combination of components of synthetic and natural origin facilitates an applicability which is supposed to be far beyond the sum of their single components. These biohybrid structures (BHS) can be built by a huge variety of building blocks including solid or soft nanoparticles, peptides/proteins, polynucleotides or low molecular weight drugs. Along with the latter the attachment of biologically active entities or imaging moieties, e. g. enzymes, fluorescence markers or targeting motifs display thereby a key step towards the development of carrier systems for drug delivery purposes.
Among the soft nanoparticles especially dendritic polymers such as perfectly branched dendrimers or hyperbranched polymers are considered as ideal building blocks, since they allow an easy tailoring of crucial properties such as solubility, biocompatibility or bioactivity by means of surface functionalization. Especially in the field of targeted drug delivery the crucial role of sizes and size distributions of carriers has been highlighted recently, since it critically influences important factors such as circulation time or biodistribution within the body.
The ability of avidin to form high molecular weight associates with biotinylated macromolecules as well as its inherent properties makes it a suitable candidate for passive and active targeting in combination with biotinylated (bio-)polymers. Furthermore, along with the covalent attachment of bioactive moieties, non-covalent attachment is a frequently used approach, because it is assumed to only require stoichiometric mixing. In context of the latter molecular recognition processes such as the avidin-biotin, β-cyclodextrin-adamantane or Ni(II)-NTA-histidine-tag interactions have shown to be fruitful strategies for the attachment of bioactive entities.
The overall aim of this work was to fabricate BHS based on dendritic glycopolymers with varied sizes in the nano- and micrometer range as models for biomedical applications e. g. carriers for drug delivery. Therefore the molecular recognition of avidin with biotin derivatives and β-cyclodextrin with adamantane derivatives was utilized in order to tailor final sizes, functionality or catalytic activity of those BHS.
|
5 |
Biotinylation and high affinity avidin capture as a strategy for LC-MS based metabolomicsRhönnstad, Sofie January 2010 (has links)
Metabolites, small endogenous molecules existing in every living cell, tissue or organism, play a vital role for maintaining life. The collective group of all metabolites, the metabolome, is a consequence of the biochemistry and biochemical pathways that a cell or tissue uses to promote survival. Analysis of the metabolome can be done to reveal changes of specific metabolites which can be a manifestation, a reason or a consequence of for example a disease. The physical chemical diversity amongst these components is tremendous and it poses a large analytical challenge to measure and quantify all of them. Targeting sub groups of the metabolome such as specific functional classes has shown potential for increasing metabolite coverage. Group selective labeling with biotin-tags followed by high affinity avidin capture is a well established purification strategy for protein purification. The purpose with this project is to explore if it is possible to transfer the avidin biotin approach to metabolomics and use this method for small molecules purification. Specifically, this investigation aims to see if it is achievable to make a biotinylation of specific functional groups, to increase the sensitivity through reduction of sample complexity in liquid chromatography mass spectrometry metabolomics analyses after high affinity avidin capture. By purifying the analyte of interest and thereby reducing the sample complexity there will be a reduction in ion suppression. The aim is to increase the analytical sensitivity through a reduction in ion suppression during liquid chromatography mass spectrometry analysis. Delimitations have been done to only investigate the possibility to obtain a biotinylation of primary amines and amides. As model compounds phenylalanine, spermidine, histamine and nicotinamide have been selected. The result from this study indicates that it is possible to increase metabolite coverage through biotin labeling followed by high affinity avidin capture. It is a gain in analytical sensitivity of selected model compounds when comparing biotinylation strategy with a control nonbiotinylation approach in a complex sample. A broader study of additional model compounds and a method development of this strategy are necessary to optimize a potential future method.
|
6 |
Assembly and characterization of a cell-particle hybrid system as a potential cancer vaccineAhmed, Kawther Khalid 01 May 2013 (has links)
Cancer vaccines represent a promising treatment modality for a world-wide health problem. Whether as an adjuvant or as a stand-alone therapy, cancer vaccines represent a tumor-specific and systemic treatment potentially capable of eliminating metastatic lesions without the severe side-effects often associated with chemotherapy. Specifically, whole cell tumor vaccines have shown promise in preclinical and clinical settings and the studies presented here represent the beginnings of an approach to improve the antitumor potency of these vaccines.
This project demonstrates as "proof of concept" the feasibility of manufacturing tumor cell-particle hybrids. The coupled use of these two components, whole tumor cells and cargo-carrying biodegradable particles, as one entity in a cancer vaccine system is a new line of research. Stable cell-particle hybrids were assembled using avidin-biotin chemistry where cargo-carrying PLGA particles (500 nm diameter) were coated with streptavidin and allowed to bind to tumor cells that had been indirectly labeled with biotin (using an integrin-specific biotinylated antibody). That successful cell-particle hybrids were assembled was determined by multiple means, including flow cytometry, laser scanning confocal microscopy and scanning electron microscopy. Two murine tumor cell lines (representing melanoma and prostate cancer) were investigated in this study and successfully demonstrated the general applicability of the assembly method. Particles appeared to be localized on the cell surface (rather than endocytosed) as determined by microscopic imaging. The cell-particle hybrid was shown to be stable to irradiation, an important consideration since whole tumor cells need to be treated with ionizing radiation prior to being used as vaccines in order to render them nonproliferative and immunogenic. We also characterized loading and release profiles of CpG, a prospective vaccine adjuvant, into PLGA particles.
We conclude that we have developed a method for manufacturing cell-particle hybrids comprising PLGA nanoparticles and irradiated tumor cells. The next step would be to use CpG-loaded particles in the assembled hybrid and test the anti-tumor immune efficiency of this cancer vaccine formulation in either a melanoma or prostate cancer model.
|
Page generated in 0.0366 seconds