• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibrage de caméra fisheye et estimation de la profondeur pour la navigation autonome

Brousseau, Pierre-André 08 1900 (has links)
Ce mémoire s’intéresse aux problématiques du calibrage de caméras grand angles et de l’estimation de la profondeur à partir d’une caméra unique, immobile ou en mouvement. Les travaux effectués se situent à l’intersection entre la vision 3D classique et les nouvelles méthodes par apprentissage profond dans le domaine de la navigation autonome. Ils visent à permettre la détection d’obstacles par un drone en mouvement muni d’une seule caméra à très grand angle de vue. D’abord, une nouvelle méthode de calibrage est proposée pour les caméras fisheyes à très grand angle de vue par calibrage planaire à correspondances denses obtenues par lumière structurée qui peuvent être modélisée par un ensemble de caméras génériques virtuelles centrales. Nous démontrons que cette approche permet de modéliser directement des caméras axiales, et validons sur des données synthétiques et réelles. Ensuite, une méthode est proposée pour estimer la profondeur à partir d’une seule image, à partir uniquement des indices de profondeurs forts, les jonctions en T. Nous démontrons que les méthodes par apprentissage profond sont susceptibles d’apprendre les biais de leurs ensembles de données et présentent des lacunes d’invariance. Finalement, nous proposons une méthode pour estimer la profondeur à partir d’une caméra en mouvement libre à 6 degrés de liberté. Ceci passe par le calibrage de la caméra fisheye sur le drone, l’odométrie visuelle et la résolution de la profondeur. Les méthodes proposées permettent la détection d’obstacle pour un drone. / This thesis focuses on the problems of calibrating wide-angle cameras and estimating depth from a single camera, stationary or in motion. The work carried out is at the intersection between traditional 3D vision and new deep learning methods in the field of autonomous navigation. They are designed to allow the detection of obstacles by a moving drone equipped with a single camera with a very wide field of view. First, a new calibration method is proposed for fisheye cameras with very large field of view by planar calibration with dense correspondences obtained by structured light that can be modelled by a set of central virtual generic cameras. We demonstrate that this approach allows direct modeling of axial cameras, and validate it on synthetic and real data. Then, a method is proposed to estimate the depth from a single image, using only the strong depth cues, the T-junctions. We demonstrate that deep learning methods are likely to learn from the biases of their data sets and have weaknesses to invariance. Finally, we propose a method to estimate the depth from a camera in free 6 DoF motion. This involves calibrating the fisheye camera on the drone, visual odometry and depth resolution. The proposed methods allow the detection of obstacles for a drone.

Page generated in 0.0676 seconds