• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A greedy heuristic for axial line placement in collections of convex polygons

Hagger, Leonard 15 February 2006 (has links)
Master of Science - Science / Axial line placement is one step in a method known as space syntax which is used in town planning to analyse architectural structures. This is becoming increasingly important in the quickly growing urban world of today. The field of axial line placement is an area of space syntax that has previously been done manually which is becoming increasingly impractical. Research is underway to automate the process and this research forms a large part of the automation. The general problem of axial line placement has been shown to be NP-complete. For this reason, previous research in this field has been focused on finding special cases where this is not the case or finding heuristics that approximate a solution. The majority of the research conducted has been on the simpler case of axial line placement in configurations of orthogonal rectangles and the only work done with convex polygons has been in the restricted case of deformed urban grids. This document presents research that finds two non-trivial special cases of convex polygons that have polynomial solutions and finds the first heuristic for general configurations of convex polygons.
2

A Comparison Study on a Set of Space Syntax based Methods : Applying metric, topological and angular analysis to natural streets, axial lines and axial segments

Xia, Xiaolin January 2013 (has links)
Recently, there has been an increasing interest in looking at urban environment as a complex system. More and more researchers are paying attention to the study of the configuration of urban space as well as human social activities within it. It has been found that correlation exists between the morphological properties of urban street network and observed human social movement patterns. This correlation implies that the influence of urban configurations on human social movements is no longer only revealed from the sense of metric distance, but also revealed from topological and geometrical perspectives. Metric distances, topological relationships and angular changes between streets should be considered when applying space syntax analysis to an urban street network. This thesis is mainly focused on the comparison among metric, topological and angular analyses based on three kinds of urban street representation models: natural streets, axial lines and axial segments. Four study areas (London, Paris, Manhattan and San Francisco) were picked up for empirical study. In the study, space syntax measures were calculated for different combinations of analytical methods and street models. These theoretical space syntax accessibility measures (connectivity, integration and choice) were correlated to the corresponding practical human movement to evaluate the correlations. Then the correlation results were compared in terms of analytical methods and street representation models respectively. In the end, the comparison of results show that (1) natural-street based model is the optimal street model for carrying out space syntax analysis followed by axial lines and axial segments; (2) angular analysis and topological analysis are more advanced than metric analysis; and (3) connectivity, integration and local integration (two-step) are more suitable for predicting human movements in space syntax. Furthermore, it can be hypothesized that topological analysis method with natural-street based model is the best combination for the prediction of human movements in space syntax, for the integration of topological and geometrical thinking.

Page generated in 0.0535 seconds