• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 21
  • 20
  • 18
  • 16
  • 15
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Multi-Domain Thermal Model for Positive Displacement Machines

Swarnava Mukherjee (16558083) 19 July 2023 (has links)
<p>Positive displacement machines (PDMs) operate based on the principle of positive displacement, which necessitates a periodic alteration of volume. This volume variation is accomplished through relative motion between machine components. PDMs find extensive applications in diverse domains, encompassing fluid power systems, lubrication systems, fluid transport systems, fuel injection systems, and more. The primary distinction among PDMs lies in the geometric mechanisms employed for fluid displacement, as well as the flow distribution mechanisms they employ. PDMs can be broadly classified into piston machines, vane machines, screw machines, and gear machines. In fluid power systems, the most commonly used PDMs are the piston and gear machines. Piston machines can be further classified into radial piston machines, in-line piston machines, and axial piston machines. The most commonly used piston machines are the axial piston machine owing to their superior efficiency and compactness. Gear machines can be further classified into external gear machines, internal gear machines, and annular gear machines. The most commonly used gear machine is the external gear machine owing to its price.</p> <p><br></p> <p>PDMs typically involve multiple solid bodies in relative motion, with micron-level gaps between them. These gaps, known as lubricating interfaces, present a significant design challenge during the machine development process. They are a primary source of power losses and play a crucial role in determining the efficiency and durability of the machine. The lubricating interfaces must effectively balance loads and maintain a high-pressure fluid seal. Achieving this delicate balance necessitates a comprehensive understanding of the underlying physical phenomena. Lubricating interfaces generate substantial heat due to viscous dissipation, which directly impacts the operation of the entire machine. The viscosity of the working fluid rapidly decays with temperature, causing the warmer fluid within the lubricating interface to possess lower viscosity. Consequently, it can support lesser loads and is more prone to leakage. Moreover, as the solid bodies enclosing the warmer fluid heat up, they undergo thermal expansion, further changing the clearance and leading to a decline in performance. Additionally, the elevated temperature of the fluid within the lubricating interface affects the compressibility of the displacement chamber fluid, thereby influencing the pressurization characteristics of the entire unit. Thus, thermal effects play a critical role in the performance of PDMs.</p> <p><br></p> <p>  The ever-increasing market demand for more compact, efficient, and reliable designs requires a continuous process of design improvements over previous designs, and sometimes completely new designs. Sophisticated simulation tools are a necessity for such a design process. Additionally, these simulation tools also prove to be valuable in formulating design modifications in case of underperforming designs. Due to the complexity associated with the operation of such units, the simulation tools need to capture a wide variety of physical phenomena. Over the past few decades, owing to the increasing computing power of the desktop computer, several simulation tools have been proposed across the literature to aid the design process of such machines with each having limitations of their own.</p> <p><br></p> <p>  The objective of the present thesis is to propose a modeling approach that assists in the design process of positive displacement machines, addressing various limitations identified in the existing literature. The approach is intentionally designed to be generic, enabling its application across a diverse range of positive displacement machines. The modeling approach encompasses three distinct domains: the displacement chamber fluid domain, the lubricating interface fluid domain, and the solid domain. A novel thermal model that integrates all three domains is introduced. </p> <p><br></p> <p>  To validate the effectiveness of the proposed modeling approach, two separate validation studies are conducted. The first study focuses on a model for an isolated piston/cylinder interface of an axial piston machine, operating under the mixed lubrication regime. The model demonstrates a strong agreement with the measured data. The second study involves steady-state measurements of an entire axial piston machine. The model is validated by comparing the steady-state flow characteristics and temperature distribution on the valveplate, both of which are accurately captured by a single fully coupled model. The modeling approach developed in this study, specifically, the energy conservation in the lubricating interface, heat transfer in the solid bodies, and thermal deformation in the solid bodies are all generalized for applicability in different types of PDMs. However, the results presented in this thesis pertain to an axial piston machine.</p>
22

Active Vibration Control of Axial Piston Machine using Higher Harmonic Least Mean Square Control of Swash Plate

Kim, Taeho, Ivantysynova, Monika 27 April 2016 (has links) (PDF)
Noise emission is a major drawback of the positive displacement machine. The noise source can be divided into structure borne noise source (SBNS) and fluid borne noise source (FBNS). Passive techniques such as valve plate optimization have been used for noise reduction of axial piston machines. However, passive techniques are only effective for limited operating conditions or at least need compromises in design. In this paper, active vibration control of swash plate is investigated for vibration and noise reduction over a wide range of operating conditions as an additional method to passive noise reduction techniques. A 75cc pump has been modified for implementation of active vibration control using the swash plate. One tri-axial acceleration sensor and one angle sensor are installed on the swash plate and a high speed servovalve is used for the swash plate actuation. The multi-frequency two-weight least mean square (LMS) filter synthesizes the servovalve input signal to generate a destructive interference force which minimizes the swash plate vibration. An experimental test setup has been realized using Labview field-programmable gate array (FPGA) via cRIO. Simulation and experimental studies are conducted to investigate the possibility of active vibration control.
23

Validation of the physical effect implementation in a simulation model for the cylinder block/valve plate contact supported by experimental investigations

Wegner, Stephan, Löschner, Fabian, Gels, Stefan, Murrenhoff, Hubertus January 2016 (has links)
Overall losses in swash plate type axial piston machines are mainly defined by three tribological interfaces. These are swash plate/slipper, piston/cylinder and cylinder block/valve plate. Within a research project, funded by the German Research Foundation, a combined approach of experimental research and simulation is chosen to acquire further knowledge on the cylinder block/valve plate contact. The experimental investigations focus on the friction torque within the contact and the measurement of the cylinder block movement in all six degrees of freedom. Simultaneously a simulation model is created focusing on the main physical effects. By considering the results of the experimental investigations significant physical effects for the simulation model are assessed. Within this paper a first comparison between experimental results and the simulation is presented, showing that for a qualitative match the implemented effects (mainly the fluid film, solid body movement, solid body contact, surface deformation) are sufficient to model the general behaviour of theinvestigated pump.
24

VALVE PLATE DESIGN MODEL FOCUSING ON NOISE REDUCTION IN AXIAL PISTON MACHINES

Abhimanyu Baruah (5930537) 03 January 2019 (has links)
<p>The advantages of high efficiency, reliability, flexibility and high power to weight ratio make axial piston pumps popular for use in a wide variety of applications like construction and agricultural machinery, off road vehicles and aerospace applications. However, a major drawback which limits their extensive use in other commercial applications is noise. One of the important components in axial piston machines is the valve plate, which influences the transition of the suction and delivery flows into and out of the displacement chamber. Appropriate design of the valve plate can play a significant role in influencing the rate of compression and expansion in the displacement chamber, and hence contribute towards the abatement of noise in axial piston machines. Furthermore, the relief grooves in valve plates makes them relatively less sensitive to operating conditions for the operation of the pump. The high sensitivity of the valve plate design towards the pressure build up in the displacement chamber and towards the noise sources are big motivation factors towards rigorously exploring the design space to find suitable designs to meet the objective of noise reduction. This motivates the development of an advanced computational tool, colloquially called 'MiNoS', where a powerful optimization algorithm has been combined together with a novel parametrization scheme for valve plate design and a 1D simulation model of swash plate type axial piston machines to find optimized designs which can contribute towards noise reduction in swash plate type axial piston machines. Furthermore, incorporation of the appropriate constraint also helps in avoiding designs susceptible to the onset of cavitation in the displacement chamber. A case study performed using the developed computational tool has been shown later in this work.</p>
25

Active Vibration Control of Axial Piston Machine using Higher Harmonic Least Mean Square Control of Swash Plate

Kim, Taeho, Ivantysynova, Monika January 2016 (has links)
Noise emission is a major drawback of the positive displacement machine. The noise source can be divided into structure borne noise source (SBNS) and fluid borne noise source (FBNS). Passive techniques such as valve plate optimization have been used for noise reduction of axial piston machines. However, passive techniques are only effective for limited operating conditions or at least need compromises in design. In this paper, active vibration control of swash plate is investigated for vibration and noise reduction over a wide range of operating conditions as an additional method to passive noise reduction techniques. A 75cc pump has been modified for implementation of active vibration control using the swash plate. One tri-axial acceleration sensor and one angle sensor are installed on the swash plate and a high speed servovalve is used for the swash plate actuation. The multi-frequency two-weight least mean square (LMS) filter synthesizes the servovalve input signal to generate a destructive interference force which minimizes the swash plate vibration. An experimental test setup has been realized using Labview field-programmable gate array (FPGA) via cRIO. Simulation and experimental studies are conducted to investigate the possibility of active vibration control.
26

A Strongly Coupled Simulation Model of Positive Displacement Machines for Design and Optimization

Thomas Ransegnola (9746363) 15 December 2020 (has links)
<div>Positive displacement machines are used in a wide variety of applications, ranging from fluid power where they act as a transmission of power, to lubrication and fluid transport. As the core of the fluid system responsible for mechanical--hydraulic energy conversion, the efficiencies of these units are a major driver of the total efficiency of the system. Furthermore, the durability of these units is a strong decider in the useful life of the system in which they operate.</div><div><br></div><div>The key challenge in designing these units comes from understanding their working principles and designing their lubricating interfaces, which must simultaneously perform a load carrying and sealing function as the unit operates. While most of the physical phenomena relevant to these machines have been studied previously in some capacity, the significance of their mutual interactions has not. For this reason, the importance of these mutual interactions is a fundamental question in these machines that this thesis answers for the first time. In analysis of two different machine types, it is confirmed that mutual interactions of both physical phenomena and neighboring fluid domains of the unit contribute significantly to the overall performance of the machine. Namely, these analyses demonstrate load sharing owing to mutual interactions on average of 20% and as high as 50%, and mutual flow interactions of at least 10%.</div><div><br></div><div>In this thesis, the behavior of the thin films of fluid in the lubricating interfaces of the units, the bodies that make up these films, and the volumes which interface with them will be considered. The resulting coupled problem requires a model that can consider the effects of motion of all floating bodies on all films and volumes, and collect the resulting loads applied by the fluid as it responds. This will require a novel 6 degree of freedom dynamics model including the inertia of the bodies and the transient pressure and shear loads of all interfaces of the body and the fluid domain.</div><div><br></div><div>During operation, fluid cavitation and aeration can occur in both the displacement chambers of the machine and its lubricating interfaces. To capture this, a novel cavitation algorithm is developed in this thesis, which considers the release of bubbles due to both gas trapped within the fluid and vaporization of the operating fluid in localized low pressure regions of the films. In the absence of cavitation, this model will also be used to find the pressures and flows over the film, communicating this information with the remainder of the fluid domain.</div><div><br></div><div>Due to the high pressures that form in these units, the bodies deform. The resulting deformation changes the shape of the films and therefore its pressure distribution. This coupled effect will be captured in one of two ways, the first relying on existing geometric information of the unit, and the other using a novel analytical approach that is developed to avoid this necessity. In either case, the added damping due to the shear of the materials will be considered for the first time. Additionally in regions of low gap height, mixed lubrication occurs and the effects of the surface asperities of the floating bodies cannot be neglected. Accurate modeling of this condition is necessary to predict wear that leads to failure in these units. This work will then develop a novel implementation for mixed lubrication modeling that is directly integrated into the cavitation modeling approach.</div><div><br></div><div>Finally, effort is made to maintain a generic tools, such that the model can be applied to any positive displacement machine. This thesis will present the first toolbox of its kind, which accounts for all the mentioned aspects in such a way that they can be captured for any machine. Using both multithreaded and sequential implementations, the tool will be capable of fully utilizing a machine on which it is run for both low latency (design) and high throughput (optimization) applications respectively. In order to make these applications feasible, the various modules of the tool will be strongly coupled using asynchronous time stepping. This approach is made possible with the development of a novel impedance tensor of the mixed universal Reynolds equation, and shows marked improvements in simulation time by requiring at most 50% of the simulation time of existing approaches.</div><div><br></div><div>In the present thesis, the developed tool will be validated using experimental data collected from 3 fundamentally different machines. Individual advancements of the tool will also be verified in isolation with comparison to the state of the art and commercial software in the relevant fields. As a demonstration of the use of the tool for design, detailed analysis of the displacing actions and lubricating interfaces of these same units will be performed. These validations demonstrate the ability of the tool to predict machine efficiencies with error averaging around 1% over all operating conditions for multiple machine types, and capture transient behavior of the units. To demonstrate the utility as a virtual optimization tool, design of a complete external gear machine design will be performed. This demonstration will start from only analytical parameters, and will track a route to a complete prototype.</div>
27

Investigation of the wear behavior of the slipper in an axial piston pump by means of simulation and measurement

Ivantysyn, Roman, Shorbagy, Ahmed, Weber, Jürgen 25 June 2020 (has links)
Axial piston pumps are universal displacement machines that are used in a vast variety of applications. Their high pressure resistance and ease of operation make them very popular, especially in mobile applications. Some applications require more robust pumps with an extended lifetime, particularly those that operate in remote environments such as marine type or mining operations. Especially new applications like displacement control have high demands on pumps such as through shaft operation (many pumps on one shaft), high dynamics and multi-quadrant operation. These demands create challenges in terms of lifetime expectancy and robustness for pump manufacturers and machine OEMs. Currently most axial piston pumps go through a run-in process. During this process the softer bronze parts shave off and change their shape according to the necessary one for the pumps’ proper operation. This process is highly dependent on the design of the parts and their manufacturing tolerances. In this paper the run-in process of the slippers of an axial piston pump was investigated by means of measurements of the gap height and wear profile as well as simulation. The measurements show a clear change of profile and gap heights for the first 120 h of the pumps operation. After that the gaps stabilize. The numerical simulations made with the program Caspar FSTI were coupled with contact wear models to output wear profiles. Different models will be introduced and compared with measurements. Both the amount of material removed and the performance of the pump before and after run-in will be discussed.
28

Wear prediction of piston/cylinder pair in axial piston pump

Lyu, Fei, Zhang, Junhui, Xu, Bing 25 June 2020 (has links)
The piston/cylinder pair is the key lubricating interface of axial piston pumps. It suffers from excessive wear due to the huge lateral force, especially under high output pressure. In order to achieve predictive maintenance, it is significant to detect the performance degradation of the piston/cylinder pair. In this paper, a method to predict the wear of the piston/cylinder pair is proposed. The wear regions and corresponding wear depths under different conditions are investigated. The distributive characteristic parameters of the oil film are obtained, which can reflect the load-bearing and lubrication conditions at each region of the friction pair. Based on the oil film characteristic parameters, the most suitable wear model is chosen to calculate the wear depth, and then the entire wear profile of the piston/cylinder pair is obtained. The experimental investigation is carried out, and the results show that the accuracy of the wear regions and corresponding wear depth prediction is high. This method can be used to pump healthy management and choose the suitable working conditions of the axial piston pump.
29

Damping strategies for energy efficient pressure controllers of variable displacement pumps

Schoemacker, Florian, Fischer, Felix, Schmitz, Katharina 25 June 2020 (has links)
In hydraulic-mechanically controlled variable displacement pumps, the actual pump controller produces additional power losses. Due to the low damping coefficients of all pump controller’s components, hydraulic-mechanically pressure controlled pumps use to oscillate while adjusting the pressure level in the hydraulic system. In several state-of-the-art variable pump controllers, a damping orifice connects the control actuator’s displacement chamber with the reservoir. This bypass dampens the movement of the control actuator but also leads to bypass losses during steady-state operation of the pump. A new concept for damping via feedback loops avoiding bypass losses is presented in t his paper.
30

Development of a lumped parameter model of an aerospace pump for condition monitoring purposes

Mkadara, Geneviève, Maré, Jean-Charles 25 June 2020 (has links)
This paper presents the development of a helicopter axial piston pump model with condition monitoring in mind. Industrial constraints and needs ask for modelling with a lumped-parameter approach and require model architecture to be addressed with care. The aim of the proposed model is to assess the merits of pump leakage monitoring through measurement of case pressure. Once reviewed the state of the art in pump modelling, the slipper/swashplate interface is taken as an example to propose and implement in Simcenter AMESim a variable gap height model. The simulation results show that commonly used lumped-parameter models overestimate leakage. It also points out that average leakage at slipper may reverse at high pump displacement.

Page generated in 0.0456 seconds