• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da biotransferência de calor nos tecidos oculares devido à presença de implantes retinianos através da utilização do método dos volumes finitos em malhas não-estruturadas

Maria Lopes Leite da Silva, Giselle January 2004 (has links)
Made available in DSpace on 2014-06-12T17:41:05Z (GMT). No. of bitstreams: 2 arquivo7690_1.pdf: 1967176 bytes, checksum: 4322ef47c9f61269f330dadd4bba0d78 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2004 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Algumas das principais causas de cegueira na população são as doenças degenerativas da retina, tais como retinose pigmentar (RP) e degeneração macular (AMD). Ambas provocam a degeneração das células fotorreceptoras tornando, assim, o sistema visual insensível à luz (Peachey & Chow, 1999). Um meio desenvolvido recentemente para restaurar o sistema visual envolve a aplicação de estímulos elétricos externos. Baseando-se neste princípio, estão sendo fabricados implantes ou próteses visuais que são pequenos chips, dotados de eletrodos capazes de estimular eletricamente áreas em torno do implante e, assim, ativar o sistema visual. Porém, o calor gerado a partir dos sensores eletrônicos pode danificar o tecido neural adjacente e até mesmo o próprio implante. Além disto, a elevação de temperatura pode tornar o ambiente propício à proliferação de bactérias podendo causar infecções (Schwiebert et al., 2002). A análise da transferência de calor no olho humano devida a implantes artificiais na retina é o objetivo do presente trabalho. Os danos térmicos causados no tecido pela exposição a altas temperaturas podem ser quantificados através da função dano. A análise da transferência de calor no olho é feita através de uma formulação do método dos volumes finitos anteriormente desenvolvida para tratar modelos bidimensionais (Guimarães, 2003; Lyra et al., 2002). Esta formulação utiliza volume de controle centrado no nó e foi implementada fazendo uso de uma estrutura de dados baseada nas arestas da malha. O modelo físico-matemático é aqui descrito detalhadamente em conjunto com a função dano. Faz-se uma breve descrição da formulação numérica bidimensional da implementação computacional, da modelagem geométrica, da geração da malha discreta e do préprocessamento dos dados adotados. Apresentam-se os resultados da análise térmica dos tecidos oculares, inicialmente na ausência, e em seguida, na presença de implantes do tipo subretinal e epirretinal. Posteriormente, esta formulação bidimensional foi estendida para lidar com modelos axissimétricos. Para validar a ferramenta, a mesma foi aplicada em problemasmodelo tridimensionais axissimétricos de transferência de calor, que apresentam solução analítica
2

Aplicações do método dos elementos de contorno na resolução de problemas elásticos axissimétricos especiais / Aplication of boundary element method for resolution of Special Elastic Axyssimetric Problems

Moura, Leonardo Caputo de 08 July 2011 (has links)
Made available in DSpace on 2016-12-23T14:08:14Z (GMT). No. of bitstreams: 1 Dissertacao de Leonardo Caputo de Moura.pdf: 3183795 bytes, checksum: bfa7e027e3b7ea9a1d2dfc95fbe87b09 (MD5) Previous issue date: 2011-07-08 / Neste trabalho desenvolve-se um estudo sobre o método dos elementos de contorno (MEC) aplicado a problemas elásticos axissimétricos, onde são revistas algumas formas de tratamento das integrais envolvidas considerados elementos de contorno quadráticos nos algoritmos do método. São adotados elementos isoparamétricos com funções de interpolação lineares ou quadráticas. Foi tomada como solução fundamental cartesiana tridimensional a solução de Kelvin, na qual se considera uma carga unitária concentrada em um domínio infinito com propriedades e comportamento elásticos. Na formulação clássica do MEC desenvolve-se um algoritmo em que os pontos de colocação são posicionados fora do domínio do problema, evitando-se assim qualquer tipo de singularidade. O problema, que é tridimensional e expresso em coordenadas cilíndricas (r, θ e z) originalmente, é integrado em relação a θ transformando-se em um problema bidimensional expresso somente em função de coordenadas ortogonais (r e z).Durante este procedimento há o aparecimento de integrais elípticas e suas derivadas, as quais são manipuladas para a obtenção das expressões de deformações e tensões fundamentais. Deslocamentos e tensões em pontos internos são determinados numa etapa seguinte. Um programa foi implementado utilizando as técnicas e formulações revistas, que tiveram sua eficiência avaliada por meio de alguns exemplos numéricos / In this work a study about the boundary element method applied to axyssimetric elastostatic problems is developed. Some approaches used to evaluate the integrals involved in the method are reviewed. Triangular isoparametric boundary elements are used, with linear or quadratic shape functions. The Kelvin solution, which uses a unitary concentrated load in an infinite elastic domain to generate the fundamental solution, is taken into account. In addition to the classical BEM algorithm, in order to avoid any singularities, an algorithm using the collocation points outside the problem domain is presented. The three-dimensional problem expressed in cartesian coordinates is transformed into cylindrical coordinates. Next, the mathematical expressions are integrated in the θ variable, transforming the problem in a two-dimensional solution. In this mathematical strategy the elliptic integrals and their derivatives are manipulated to obtain the fundamental stresses. Here the positions of source points are external to the physical domain, avoiding singularities. A program has been developed using these approaches, its efficiency was evaluated by means of some numerical examples
3

Impacto hidrodinâmico vertical de corpos axissimétricos através de uma abordagem variacional. / Vertical hydrodynamic impact of axisymmetric bodies through a variational approach.

Santos, Flávia Milo dos 08 October 2013 (has links)
Do ponto de vista da hidrodinâmica clássica, o problema de impacto hidrodinâmico configura-se como um problema de contorno com fronteiras móveis cuja posição deve ser determinada simultaneamente à solução da equação de campo. Essa característica traz dificuldades para obtenção de soluções analíticas e numéricas. Nesse sentido, o presente trabalho propõe o desenvolvimento de um método numérico específico para analisar o problema de impacto hidrodinâmico de corpos sólidos rígidos contra a superfície livre da água. A solução da equação dinâmica não linear do problema de impacto depende da determinação do tensor de massa adicional a cada instante de tempo, o qual depende da posição e atitude do corpo no instante considerado. Um método variacional específico é empregado, através do qual os coeficientes de massa adicional são determinados com erro de segunda ordem, na posição considerada. Tal método é exemplo de técnicas numéricas dessingularizadas, através das quais o potencial de velocidade é aproximado em um espaço finito-dimensional formado por funções-teste derivadas de soluções potenciais elementares, tais como pólos, dipolos, anéis de dipolos, de vórtices, etc. O problema potencial de impacto hidrodinâmico, que se caracteriza pela dominância das forças de inércia, é formulado admitindo-se a superfície líquida como equipotencial, o que permite a analogia com o limite assintótico de frequência infinita do problema de radiação de ondas causada pelo movimento de corpos flutuantes. O método desenvolvido é então aplicado ao caso de impacto vertical de corpos axissimétricos, formulando o problema sob o chamado modelo de von Kármán generalizado (GvKM). Nesse modelo as condições de contorno na geometria exata do corpo são satisfeitas, porém os efeitos do empilhamento de água junto às raízes do jato, que se forma ao longo da intersecção com a superfície livre, não são considerados no caso geral. Resultados numéricos do coeficiente de massa adicional para uma família de esferoides são apresentados e tabulados para o pronto uso em análise e projeto. Além disso, considerações acerca da inclusão do efeito de empilhamento de água junto às raízes do jato, ou seja, da elevação da superfície livre são também feitas para o caso de esferas, fazendo uso de abordagens analíticas encontradas na literatura especializada. / In terms of classical hydrodynamics, the hydrodynamic impact problem is characterized as a boundary problem with moving boundary which position must be determined simultaneously with the solution of the field equation. This feature brings difficulties to get analytical and numerical solutions. In this sense, the purpose of this work is to present a variational method technique specifically designed for the hydrodynamic impact problem of axisymmetric rigid bodies on the free surface. The solution of the nonlinear dynamic equation of the impacting motion depends on the determination of the added mass tensor and its derivative with respect to time at each integration time step. This is done through a variational method technique that leads to a second-order error approximation for the added mass if a first-order error approximation is sought for the velocity potential. This method is an example of desingularized numerical techniques, through which the velocity potential is approximated in a sub-space of finite dimension, formed by trial functions derived from elementary potential solutions, such as poles, dipoles, and vortex rings, which are placed inside the body. The potential problem of hydrodynamic impact, characterized by the dominance of inertial forces, is here formulated by assuming the liquid surface as equipotential, what allows the analogy with the infinity frequency limit in the usual free surface oscillating floating body problem. The method is applied to the vertical hydrodynamic impact of axisymmetric bodies within the so-called Generalized von Kármán Model (GvKM). In such approach, the exact body boundary condition is full-filled and the wet correction is not taken into account. Numerical results for the added mass coefficient for a family of spheroids are presented. Moreover, considerations are made on the effects of the free surface elevation for the specific case of an impacting sphere, through analytical approaches.
4

Impacto hidrodinâmico vertical de corpos axissimétricos através de uma abordagem variacional. / Vertical hydrodynamic impact of axisymmetric bodies through a variational approach.

Flávia Milo dos Santos 08 October 2013 (has links)
Do ponto de vista da hidrodinâmica clássica, o problema de impacto hidrodinâmico configura-se como um problema de contorno com fronteiras móveis cuja posição deve ser determinada simultaneamente à solução da equação de campo. Essa característica traz dificuldades para obtenção de soluções analíticas e numéricas. Nesse sentido, o presente trabalho propõe o desenvolvimento de um método numérico específico para analisar o problema de impacto hidrodinâmico de corpos sólidos rígidos contra a superfície livre da água. A solução da equação dinâmica não linear do problema de impacto depende da determinação do tensor de massa adicional a cada instante de tempo, o qual depende da posição e atitude do corpo no instante considerado. Um método variacional específico é empregado, através do qual os coeficientes de massa adicional são determinados com erro de segunda ordem, na posição considerada. Tal método é exemplo de técnicas numéricas dessingularizadas, através das quais o potencial de velocidade é aproximado em um espaço finito-dimensional formado por funções-teste derivadas de soluções potenciais elementares, tais como pólos, dipolos, anéis de dipolos, de vórtices, etc. O problema potencial de impacto hidrodinâmico, que se caracteriza pela dominância das forças de inércia, é formulado admitindo-se a superfície líquida como equipotencial, o que permite a analogia com o limite assintótico de frequência infinita do problema de radiação de ondas causada pelo movimento de corpos flutuantes. O método desenvolvido é então aplicado ao caso de impacto vertical de corpos axissimétricos, formulando o problema sob o chamado modelo de von Kármán generalizado (GvKM). Nesse modelo as condições de contorno na geometria exata do corpo são satisfeitas, porém os efeitos do empilhamento de água junto às raízes do jato, que se forma ao longo da intersecção com a superfície livre, não são considerados no caso geral. Resultados numéricos do coeficiente de massa adicional para uma família de esferoides são apresentados e tabulados para o pronto uso em análise e projeto. Além disso, considerações acerca da inclusão do efeito de empilhamento de água junto às raízes do jato, ou seja, da elevação da superfície livre são também feitas para o caso de esferas, fazendo uso de abordagens analíticas encontradas na literatura especializada. / In terms of classical hydrodynamics, the hydrodynamic impact problem is characterized as a boundary problem with moving boundary which position must be determined simultaneously with the solution of the field equation. This feature brings difficulties to get analytical and numerical solutions. In this sense, the purpose of this work is to present a variational method technique specifically designed for the hydrodynamic impact problem of axisymmetric rigid bodies on the free surface. The solution of the nonlinear dynamic equation of the impacting motion depends on the determination of the added mass tensor and its derivative with respect to time at each integration time step. This is done through a variational method technique that leads to a second-order error approximation for the added mass if a first-order error approximation is sought for the velocity potential. This method is an example of desingularized numerical techniques, through which the velocity potential is approximated in a sub-space of finite dimension, formed by trial functions derived from elementary potential solutions, such as poles, dipoles, and vortex rings, which are placed inside the body. The potential problem of hydrodynamic impact, characterized by the dominance of inertial forces, is here formulated by assuming the liquid surface as equipotential, what allows the analogy with the infinity frequency limit in the usual free surface oscillating floating body problem. The method is applied to the vertical hydrodynamic impact of axisymmetric bodies within the so-called Generalized von Kármán Model (GvKM). In such approach, the exact body boundary condition is full-filled and the wet correction is not taken into account. Numerical results for the added mass coefficient for a family of spheroids are presented. Moreover, considerations are made on the effects of the free surface elevation for the specific case of an impacting sphere, through analytical approaches.

Page generated in 0.0527 seconds