• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exposure to Trimethyltin Significantly Enhances Acetylcholinesterase Staining in the Rat Dentate Gyrus

Woodruff, Michael L., Baisden, Ronald H. 01 January 1990 (has links)
Trimethyltin (TMT) is known to produce substantial damage to the hippocampal formation. It also destroys neurons within the entorhinal cortex, thereby causing degeneration of perforant path afferents that terminate in the outer molecular layer (OML) of the dentate gyrus. Surgical destruction of the entorhinal cortex also causes the perforant path to degenerate. This leads to reactive synpatogenesis (axonal sprouting) of septal afferents to the dentate gyrus. The purpose of the present study was to determine whether administration of 6 mg/kg of TMT by gavage to rats would cause axonal sprouting within the septodentate projection. A histochemical stain for acetycholinesterase (AChE) was used. Compared to control subjects rats given TMT exhibited significantly denser AChE staining in the dentate OML. This is putative indication of reactive synaptogenesis within the cholinergic projection to this layer of the dentate and is somewhat surprising because other neurotoxins, such as lead and ethanol, that affect neurons within the hippocampal formation reduce the capacity for reactive synaptogenesis in response to lesions of the entorhinal cortex.
2

Effects of Trimethyltin (TMT) on Choline Acetyltransferase Activity in the Rat Hippocampus - Influence of Dose and Time Following Exposure

Cannon, Richard L., Hoover, Donald B., Baisden, Ronald H., Woodruff, Michael L. 01 September 1994 (has links)
Trimethyltin (TMT) destroys specific subfields of the hippocampus in the rat. TMT also increases choline acetyltransferase (ChAT) activity in CA1 of Ammon's horn and the outer molecular layer of the dentate gyrus. This observation suggests that axonal sprouting occurs in the cholinergic septohippocampal system in response to TMT. However, neither does-response nor time course data are available for the effects of TMT on this enzyme. The effects of three dose levels of TMT on ChAT activity in CA1 and the dentate gyrus were determined in Experiment 1 and ChAT activity in these two areas was measured at six time points following exposure to TMT in Experiment 2. Only the highest dose of TMT (6 mg/kg) significantly increased ChAT activity. ChAT activity in the dentate gyrus increased significantly by 3 d after administration and continued to increase until 21 d after exposure. A significant increase was not observed in CA1 until 7 d after exposure to TMT. Asymptotic levels were still reached at d 21. These results indicate a steep dose-response curve for TMT-induced changes in ChAT activity in the hippocampal formation and that this marker of cholinergic activity is more sensitive to perturbation by TMT in the dentate gyrus than Ammon's horn.

Page generated in 0.0918 seconds