• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • Tagged with
  • 16
  • 16
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Obesity and loading during lifting

Pryce, Rob 22 August 2013 (has links)
Background Obesity is associated with an increased risk of back pain, attributed to elevated mechanical load. Back injury risk is also determined by movement patterns (kinematics) and physiological factors (exertion, muscle activation). Lifting, particularly repetitive, is the most frequently cited injurious activity. However, in spite of the obvious relation, a paucity of information exists quantifying the interaction of obesity and repetition during lifting. Purpose To determine the effects of obesity and repetition on mechanical, kinematic and physiological lifting outcomes. Methods: An individual-specific, biomechanical model (based upon 3D photogrammetry) was developed to estimate the effect of obesity on back load during lifting (study 1). Lifting strategy and physiological outcomes related to obesity were examined in a fixed-pace, repetitive lifting task (study 2). The effect of task constraints on lifting strategy of high and normal BMI individuals were determined (study 3), followed by an evaluation of muscle activation responses during a repetitive trunk motion similar to that encountered during lifting (study 4). Results: Obesity-specific alterations of important determinants of back load (inertia, CMloc) were revealed. Obesity was related to a substantial increase in back load (M=+197.3, SE=16.8 Nm about L5/S1), however the effect differed across lifting tasks. The lifting strategy of high-BMI individuals was characterized by an increased distance to the external mass (M=+4.7, SE=1.8 cm) and shorter lift duration (M=230, SE=130 msec), with increased cardiovascular effort (M=+7.4, SE=3.4% HRmax) but no change in perceived exertion. Lifting frequency was not a major determinant of lifting strategy, however strategy was influenced by the presence and type of external pacing. A phase-specific, rapid alteration in muscle activation response was evident in the MMG signal during the initial repetitions of a repetitive trunk motion. Conclusion: The effect of obesity during lifting is task-dependent, and cannot be attributable solely to mechanical factors. Future studies should consider tasks that are unconstrained, and examine the initial familiarization period of repetitive tasks, specifically the lowering phase of motions. These findings have relevance to back injury mechanisms related to obesity and the design of injury prevention programs for individuals with a high BMI.
2

Obesity and loading during lifting

Pryce, Rob 22 August 2013 (has links)
Background Obesity is associated with an increased risk of back pain, attributed to elevated mechanical load. Back injury risk is also determined by movement patterns (kinematics) and physiological factors (exertion, muscle activation). Lifting, particularly repetitive, is the most frequently cited injurious activity. However, in spite of the obvious relation, a paucity of information exists quantifying the interaction of obesity and repetition during lifting. Purpose To determine the effects of obesity and repetition on mechanical, kinematic and physiological lifting outcomes. Methods: An individual-specific, biomechanical model (based upon 3D photogrammetry) was developed to estimate the effect of obesity on back load during lifting (study 1). Lifting strategy and physiological outcomes related to obesity were examined in a fixed-pace, repetitive lifting task (study 2). The effect of task constraints on lifting strategy of high and normal BMI individuals were determined (study 3), followed by an evaluation of muscle activation responses during a repetitive trunk motion similar to that encountered during lifting (study 4). Results: Obesity-specific alterations of important determinants of back load (inertia, CMloc) were revealed. Obesity was related to a substantial increase in back load (M=+197.3, SE=16.8 Nm about L5/S1), however the effect differed across lifting tasks. The lifting strategy of high-BMI individuals was characterized by an increased distance to the external mass (M=+4.7, SE=1.8 cm) and shorter lift duration (M=230, SE=130 msec), with increased cardiovascular effort (M=+7.4, SE=3.4% HRmax) but no change in perceived exertion. Lifting frequency was not a major determinant of lifting strategy, however strategy was influenced by the presence and type of external pacing. A phase-specific, rapid alteration in muscle activation response was evident in the MMG signal during the initial repetitions of a repetitive trunk motion. Conclusion: The effect of obesity during lifting is task-dependent, and cannot be attributable solely to mechanical factors. Future studies should consider tasks that are unconstrained, and examine the initial familiarization period of repetitive tasks, specifically the lowering phase of motions. These findings have relevance to back injury mechanisms related to obesity and the design of injury prevention programs for individuals with a high BMI.
3

Evaluating Training Approaches for the Revised NIOSH Lifting Equation

Bowles, William, Jr. 19 April 2012 (has links)
No description available.
4

Mechanical response of the porcine cervical spine to acute and repetitive anterior-posterior shear

Howarth, Samuel 07 January 2011 (has links)
Approximately 80% of the population will experience low-back pain within their lifetime. Significant research efforts have focused on compressive loading as an injury mechanism that could lead to low-back pain and injury. However, the influence of shear loading, and its relationship to vertebral tissue tolerances as well as modulating factors for these tolerances have not been studied as extensively. The primary objective of this thesis was to produce a series of investigations that begin to determine the roles of different modulating factors such as posture, compression, bone density, bone morphology, and repetitive load magnitude on measured vertebral joint shear failure tolerances. The thesis comprises four independent studies using in vitro mechanical testing, imaging modalities, and finite element modeling. Each of the in vitro studies within this thesis used a validated porcine cervical model as a surrogate for the human lumbar spine. The first study employed in vitro mechanical testing to investigate the combined roles of flexion/extension postural deviation and compressive load on the measured ultimate shear failure tolerances. Peripheral quantitative computed tomography scans of the pars interarticularis and measurements of vertebral bone morphology were used in the second investigation along with in vitro mechanical testing to identify the morphological characteristics that can be used to predict ultimate shear failure tolerances. The influence of sub-maximal shear load magnitude on the cumulative shear load and number of loading cycles sustained prior to failure were investigated with in vitro mechanical testing in the third study. Finally, a finite element model of the porcine C3-C4 functional spinal unit was used to investigate the plausibility of hypotheses, developed from previous research and the findings of the first investigation for this thesis, surrounding alterations in measured ultimate shear failure tolerances as a function of changes in facet interaction. Results from the first investigation showed that there was no statistically significant interaction between postural deviation and compressive force on ultimate shear failure tolerance. However, ultimate shear failure tolerance was reduced (compared to neutral) by 13.2% with flexed postures, and increased (compared to neutral) by 12.8% with extended postures. Each 15% increment (up to a maximum of 60% of predicted compressive failure tolerance) in compressive force was met with an average 11.1% increase in ultimate shear failure tolerance. It was hypothesized that alterations in flexion/extension posture and/or compressive force altered the location for the force centroid of facet contact. These changes in the location of facet contact were hypothesized to produce subsequent changes in the bending moment at the pars interarticularis that altered the measured ultimate shear failure tolerance. The three leading factors for calculating of measured ultimate shear failure tolerance were the pars interarticularis length for the cranial vertebra, the average facet angle measured in the transverse plane, and cortical bone area through the pars interarticularis. A bi-variate linear regression model that used the cranial vertebra’s pars interarticularis length and average facet angle as inputs was developed to nondestructively calculate ultimate shear failure tolerances of the porcine cervical spine. Longer pars interarticularis lengths and facets oriented closer to the sagittal plane were associated with higher measured ultimate shear failure tolerances. Fractures observed in this investigation were similar to those reported for studies performed with human specimens and also similar to reported spondylolitic fractures associated with shear loading in humans. This provided additional evidence that the porcine cervical spine is a suitable surrogate in vitro model for studying human lumbar spine mechanics. Altered sub-maximal shear load magnitude create a non-linear decrease in both the number of cycles and the cumulative shear load sustained prior to failure. These findings suggested that estimates of cumulative shear load should assign greater importance to higher instantaneous shear loads. This was due to an increased injury potential at higher instantaneous shear loads. Cumulative load sustained prior to failure was used to develop a tissue-based weighting factor equation that would apply nonlinearly increased weight to higher shear load magnitudes in estimates of cumulative shear load. A finite element model of the porcine C3-C4 functional spinal unit was created, and simulations were performed using similar boundary conditions as the comparable in vitro tests, to assess the plausibility of the moment arm hypothesis offered within the first investigation of this thesis. Moment arm length between the force centroid of facet contact and the location of peak stress within the pars interarticularis was increased for flexed postures and decreased for extended postures. Alterations in moment arm length were larger for postural deviation than compressive force, suggesting a secondary mechanism to explain the observed increase in shear failure tolerance with higher compressive loads from the first investigation. One such possibility was the increase in the number of contacting nodes with higher compressive forces. Alterations in moment arm length were able to explain 50% of the variance in measured ultimate shear failure tolerances from the first study. Thus, the finite element model was successful in demonstrating the plausibility of moment arm length between the force centroid of facet contact and the pars interarticularis as a modulator of measured ultimate shear failure tolerance. This thesis has developed the basis for understanding how failure of the vertebral joint exposed to shear loading can be modulated. In particular, this thesis has developed novel equations to predict the ultimate shear failure tolerance measured during in vitro testing, and to determine appropriate weighting factors for sub-maximal shear forces in calculations of cumulative shear load. Evidence presented within this thesis also provides support for the long-standing moment arm hypothesis for modulation of shear injury potential.
5

Mechanical response of the porcine cervical spine to acute and repetitive anterior-posterior shear

Howarth, Samuel 07 January 2011 (has links)
Approximately 80% of the population will experience low-back pain within their lifetime. Significant research efforts have focused on compressive loading as an injury mechanism that could lead to low-back pain and injury. However, the influence of shear loading, and its relationship to vertebral tissue tolerances as well as modulating factors for these tolerances have not been studied as extensively. The primary objective of this thesis was to produce a series of investigations that begin to determine the roles of different modulating factors such as posture, compression, bone density, bone morphology, and repetitive load magnitude on measured vertebral joint shear failure tolerances. The thesis comprises four independent studies using in vitro mechanical testing, imaging modalities, and finite element modeling. Each of the in vitro studies within this thesis used a validated porcine cervical model as a surrogate for the human lumbar spine. The first study employed in vitro mechanical testing to investigate the combined roles of flexion/extension postural deviation and compressive load on the measured ultimate shear failure tolerances. Peripheral quantitative computed tomography scans of the pars interarticularis and measurements of vertebral bone morphology were used in the second investigation along with in vitro mechanical testing to identify the morphological characteristics that can be used to predict ultimate shear failure tolerances. The influence of sub-maximal shear load magnitude on the cumulative shear load and number of loading cycles sustained prior to failure were investigated with in vitro mechanical testing in the third study. Finally, a finite element model of the porcine C3-C4 functional spinal unit was used to investigate the plausibility of hypotheses, developed from previous research and the findings of the first investigation for this thesis, surrounding alterations in measured ultimate shear failure tolerances as a function of changes in facet interaction. Results from the first investigation showed that there was no statistically significant interaction between postural deviation and compressive force on ultimate shear failure tolerance. However, ultimate shear failure tolerance was reduced (compared to neutral) by 13.2% with flexed postures, and increased (compared to neutral) by 12.8% with extended postures. Each 15% increment (up to a maximum of 60% of predicted compressive failure tolerance) in compressive force was met with an average 11.1% increase in ultimate shear failure tolerance. It was hypothesized that alterations in flexion/extension posture and/or compressive force altered the location for the force centroid of facet contact. These changes in the location of facet contact were hypothesized to produce subsequent changes in the bending moment at the pars interarticularis that altered the measured ultimate shear failure tolerance. The three leading factors for calculating of measured ultimate shear failure tolerance were the pars interarticularis length for the cranial vertebra, the average facet angle measured in the transverse plane, and cortical bone area through the pars interarticularis. A bi-variate linear regression model that used the cranial vertebra’s pars interarticularis length and average facet angle as inputs was developed to nondestructively calculate ultimate shear failure tolerances of the porcine cervical spine. Longer pars interarticularis lengths and facets oriented closer to the sagittal plane were associated with higher measured ultimate shear failure tolerances. Fractures observed in this investigation were similar to those reported for studies performed with human specimens and also similar to reported spondylolitic fractures associated with shear loading in humans. This provided additional evidence that the porcine cervical spine is a suitable surrogate in vitro model for studying human lumbar spine mechanics. Altered sub-maximal shear load magnitude create a non-linear decrease in both the number of cycles and the cumulative shear load sustained prior to failure. These findings suggested that estimates of cumulative shear load should assign greater importance to higher instantaneous shear loads. This was due to an increased injury potential at higher instantaneous shear loads. Cumulative load sustained prior to failure was used to develop a tissue-based weighting factor equation that would apply nonlinearly increased weight to higher shear load magnitudes in estimates of cumulative shear load. A finite element model of the porcine C3-C4 functional spinal unit was created, and simulations were performed using similar boundary conditions as the comparable in vitro tests, to assess the plausibility of the moment arm hypothesis offered within the first investigation of this thesis. Moment arm length between the force centroid of facet contact and the location of peak stress within the pars interarticularis was increased for flexed postures and decreased for extended postures. Alterations in moment arm length were larger for postural deviation than compressive force, suggesting a secondary mechanism to explain the observed increase in shear failure tolerance with higher compressive loads from the first investigation. One such possibility was the increase in the number of contacting nodes with higher compressive forces. Alterations in moment arm length were able to explain 50% of the variance in measured ultimate shear failure tolerances from the first study. Thus, the finite element model was successful in demonstrating the plausibility of moment arm length between the force centroid of facet contact and the pars interarticularis as a modulator of measured ultimate shear failure tolerance. This thesis has developed the basis for understanding how failure of the vertebral joint exposed to shear loading can be modulated. In particular, this thesis has developed novel equations to predict the ultimate shear failure tolerance measured during in vitro testing, and to determine appropriate weighting factors for sub-maximal shear forces in calculations of cumulative shear load. Evidence presented within this thesis also provides support for the long-standing moment arm hypothesis for modulation of shear injury potential.
6

THE POTENTIAL ROLE OF WEIGHTLIFTING TRAINING ON THE BIOMECHANICS OF PATIENT MOVEMENTS IN THE PREVENTION OF BACK INJURY

Callihan, Michael Lee 01 January 2018 (has links)
Back injury in nursing is a significant concern for the health of the worker, the costs to the healthcare system, and the safety of the patients. Current injury prevention measures include ergonomic adjustments to the work environment, the use of mechanical lifting equipment, policies to limit manual handling of patients, and the teaching of lifting techniques. These measures have been met with limited success in reducing injury rates. Little is known about whether changing the lifting biomechanics used in the healthcare setting can lower high injury rates across the profession. The purposes of this dissertation were to: 1) identify the biomechanical risk factors routinely encountered by healthcare workers during the performance of their daily job tasks and 2) determine whether nurses with formal training in weightlifting have better biomechanical performance during routine nursing tasks than nurses with no training. This dissertation included the development of a conceptual model to guide the research. The framework identified the impact of muscle fatigue on the biomechanics used in lifting and moving of heavy equipment and patients. The worker characteristics that affect muscle fatigue include age, gender, height, BMI and the type of recreational activities outside of the workplace. These characteristics were controlled for in two studies aimed at providing a greater understanding of biomechanics used by nurses during routine patient care related activities. The first study addressed a gap in knowledge related to the biomechanics of lifting techniques used by nurses in the work environment, specifically of the anterior rotation of the trunk and pelvis, angles of the hips, knees, and lumbar spine, and muscle activation of core and leg muscles used during patient care activities. We analyzed the biomechanics used by 11 senior level nursing students lifting a simulated patient attached to a rigid spine board from the floor to a standing height. Previous studies have identified that a lumbar spine angle in excess of 22.5 degrees flexion when performing a lift places a worker at a greater risk for back injury. Biomechanical risk factors effecting this lumbar spine angle identified in this study included the anterior rotation of the trunk and pelvis in the starting position of the lift, the angle of the hips and knees during the lifting cycle, the dominate muscle activation of the rectus femoris during the lifting cycle influencing the anterior pelvic rotation, and minimal activation of the core muscles required to add stability to the spine during the lift. This dissertation identifies common biomechanical risk factors routinely encountered by healthcare workers, and gives indication of differences between nurses with formal weightlifting training and those that have not received formal weightlifting training. The differences in body positioning and core stabilization can help reduce the biomechanical risks of back injury in nursing.
7

Lumbar MRI abnormalities and muscle morphology, trunk kinematics and lower back injury in professional fast bowlers in cricket

Ranson, Craig A January 2007 (has links)
Lower back injury remains the most important injury problem in professional cricket with lumbar stress fractures in fast bowlers accounting for the most lost playing time. Previous research has associated workload, paraspinal muscle asymmetry and technique factors with lower back injury in fast bowlers, however, preventative strategies such as workload directives and coaching guidelines have not reduced the incidence and prevalence of these injuries. Recent developments in medical imaging technology have improved diagnosis of pathologies such as lumbar posterior bony element (partes interarticulares and pedicles) stress fractures and intervertebral disc degeneration in athletes whilst also allowing quantification of other, potentially associated factors such as paraspinal muscle asymmetry. However, there is very little published research regarding the use of modalities such as magnetic resonance imaging (MRI) in the identification and prognosis of these types of injuries in fast bowlers. Similarly, advances in three-dimensional (3D) motion analysis has aided technique evaluation in a variety of sports, however, little remains known about the pathomechanics of lower back injury in fast bowling. Therefore, the aim of this doctoral research was to investigate relationships between lower back injury and; the MRI appearance of the lumbar posterior bony elements and intervertebral discs, MRI-derived lumbar muscle morphology and the three-dimensional (3D) trunk kinematics of professional fast bowlers in cricket. This was examined in a series of five studies. The first study undertaken was an investigation of the MRI appearance of the lumbar spines of 36 asymptomatic professional fast bowlers and 17 active controls. / It was identified that the fast bowlers had a high prevalence of multi-level, predominantly non-dominant side, acute and chronic stress changes in the posterior bony elements of the lumbar spine. Multiple level disc degeneration was also more advanced in the fast bowlers compared with the control - iv - participants. However, disc degeneration appeared not to be associated with lumbar stress injury. The second study investigated the reliability and accuracy of using MRI to determine the FCSA of the lumbar paraspinal muscles (psoas, quadratus lumborum, erector spinae and multifidus). The novel methodology developed in this study was determined to be both valid and highly reliable. In the third study, this technique was then used to describe the functional crosssectional area (FCSA) morphology of the paraspinal muscles in a group of 46 professional fast bowlers and the 17 control participants scanned in the first study. It reinforced that there was a higher prevalence of lumbar muscle asymmetry in the fast bowler group. Paraspinal muscle asymmetry, consistent with hypertrophy of the dominant side muscle, was most prevalent in the quadratus lumborum of fast bowlers, and was also evident in the lumbar multifidus in both groups of subjects. The aims of the fourth study of the thesis were to quantify the proportion of lower trunk motion utilised during the delivery stride of fast bowling and to investigate the relationship between the most accepted fast bowling action classification system and potentially injurious kinematics of the lower trunk. 3D kinematic data were collected from 50 male professional fast bowlers during fast bowling trials and these were normalised to each bowler’s standing lower trunk range of motion. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30°. / The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%) and ipsilateral rotation (79%) was utilised during the front foot contact phase of the fast bowling delivery stride. There was no significant difference between mixed and non-mixed bowlers in the range of motion used during fast bowling. It was concluded that fast bowling action characteristics currently used to identify potentially dangerous action types may not be directly related to the likely pathomechanics of contralateral side lumbar stress injuries. It is proposed that coupled lower trunk extension, ipsilateral rotation in addition to extreme contralateral side-flexion, during the early part of the front foot contact phase of the bowling action may be an important mechanical factor in the aetiology of this type of injury. In the final study, a combination of the factors described in earlier studies i.e. the lumbar MRI appearance of the partes interarticulares and intervertebral discs, paraspinal muscle asymmetry and selected bowling action and delivery stride trunk kinematic variables, were examined. Therefore, the aim of this study was to examine the relationship between fast bowler lower back injury occurrence (one season either side of testing) and the aforementioned factors that were measured when participants were asymptomatic and bowling competitively. The results of this study indicated that a high percentage of professional fast bowlers in the United Kingdom continue to sustain a high number of acute lumbar stress injuries and these result a significant amount of lost playing and training time. Fast bowling action classification and lower trunk kinematic variables were not conclusively linked to acute lumbar stress injury occurrence. However, further investigation of the effect of coupled lower trunk motion on nondominant side lumbar bone stress is indicated. / The presence of acute MRI stress changes (particularly acute stress changes such as bone marrow oedema, periostitis and acute fracture lines) in the non-dominant side lumbar posterior elements seem to have a relationship with acute stress injury occurrence. Regular lumbar MRI scanning may assist in identifying early acute stress changes prior to the onset of symptoms. Intervertebral disc degeneration was less prevalent amongst professional fast bowlers who suffered acute stress injuries than those who had no significant lower back injury. Finally, although fast bowlers have a high prevalence of quadratus lumborum and lumbar multifidus asymmetry (larger on the dominant side), there was no observed relationship between acute lumbar stress injury and these findings.
8

Smart Spine Tape: Active Wearable Posture Monitoring for Prevention of Low Back Pain and Injury

Borda, Samuel J 01 August 2022 (has links) (PDF)
Back pain and injury are a global health issue and are a leading cause of work and activity absence. Prevention would not only save those affected from the burden of pain and discomfort, but would also save people from loss of over 290 million workdays annually and save the healthcare system billions of dollars in expenses per year. Successful research and development of a wearable technology capable of comprehensively monitoring spinal postures that are leading causes of back pain and injury can result in prevention of mild to severe back pain and injury for high-risk people. To accomplish this, the Smart Spine Tape is being developed with specific focus on accuracy, usability, and accessibility, all of which are important factors to consider when engineering for a wide array of populations. Accuracy was assessed using three human participants, with spinal angle data of the Smart Spine Tape being compared to established motion analysis technology data. Prototypes of the device showed promise in the ability to accurately measure spinal postures, but inconsistencies between samples and trials indicated that further development is necessary. Usability and accessibility were assessed using ten human participants who completed one workout each and reported on the tape’s comfort, durability, and ease of use, as well as their thoughts on how much they would be willing to pay for a fully functional version of the device. Participants reported high comfort, high durability, and moderate ease of use throughout their experiences, with the average price range that they would be willing to pay being between $25 and $75. Future directions have been identified that address inconsistencies in data collected by the Smart Spine Tape, possibly caused by inconsistent resistive properties of the piezoresistive ink and plastic deformation of the tape during testing. These future directions involve modifying testing, material, and fabrication methods.
9

Preventing Back Injury in Caregivers

Dutta, Tilak 21 August 2012 (has links)
Caregivers injure their backs more than workers in any other industry. Efforts to reduce injuries have been on-going for decades with limited results. Mechanical lift devices have been incorporated into clinical practice over the past 30 years to reduce the risk of injury from patient lifting. Yet injury rates remain high. The use of mechanical lifts may be partly to blame. While these devices assist with lifting patients, they also introduce new activities that result in caregivers experiencing unsafe loading on the spine. We measured loads on the lower back during manoeuvres of the two most common lift types (overhead and floor) as well as during sling insertion. A new device called SlingSerterTM was evaluated for use in the clinical environment. We also investigated spine shrinkage as a measurement tool for estimating cumulative load. Caregivers worked alone and in pairs for both lift maneuvering and sling insertion activities. Overhead lift use resulted in much lower loads than floor lift use. We conclude caregivers can safely operate overhead lifts alone, while floor lift use remained unsafe even with two caregivers. Less-experienced caregivers had higher loads than more-experienced counterparts when using floor lifts. There was no corresponding effect of experience with overhead lift use and we found this to be a further benefit of overhead lifts over floor lifts. Most caregivers exceeded the safe limit for spine compression during sling insertion, though a single caregiver was at no higher risk of injury than two caregivers working together. Clinicians who tested SlingSerterTM agreed the device would be useful in clinical practice, particularly with bariatric patients and other special patient populations that are difficult to roll or turn. Finally, we investigated a novel method for estimating cumulative load based on spine shrinkage. There is growing recognition that excess cumulative load may be responsible for back injury. We found the variability in spine shrinkage was too large to estimate cumulative load directly. However, the technique may still be useful for determining the relative importance of the load from different activities to the cumulative total.
10

Preventing Back Injury in Caregivers

Dutta, Tilak 21 August 2012 (has links)
Caregivers injure their backs more than workers in any other industry. Efforts to reduce injuries have been on-going for decades with limited results. Mechanical lift devices have been incorporated into clinical practice over the past 30 years to reduce the risk of injury from patient lifting. Yet injury rates remain high. The use of mechanical lifts may be partly to blame. While these devices assist with lifting patients, they also introduce new activities that result in caregivers experiencing unsafe loading on the spine. We measured loads on the lower back during manoeuvres of the two most common lift types (overhead and floor) as well as during sling insertion. A new device called SlingSerterTM was evaluated for use in the clinical environment. We also investigated spine shrinkage as a measurement tool for estimating cumulative load. Caregivers worked alone and in pairs for both lift maneuvering and sling insertion activities. Overhead lift use resulted in much lower loads than floor lift use. We conclude caregivers can safely operate overhead lifts alone, while floor lift use remained unsafe even with two caregivers. Less-experienced caregivers had higher loads than more-experienced counterparts when using floor lifts. There was no corresponding effect of experience with overhead lift use and we found this to be a further benefit of overhead lifts over floor lifts. Most caregivers exceeded the safe limit for spine compression during sling insertion, though a single caregiver was at no higher risk of injury than two caregivers working together. Clinicians who tested SlingSerterTM agreed the device would be useful in clinical practice, particularly with bariatric patients and other special patient populations that are difficult to roll or turn. Finally, we investigated a novel method for estimating cumulative load based on spine shrinkage. There is growing recognition that excess cumulative load may be responsible for back injury. We found the variability in spine shrinkage was too large to estimate cumulative load directly. However, the technique may still be useful for determining the relative importance of the load from different activities to the cumulative total.

Page generated in 0.0584 seconds