• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical and Experimental study of shock boundary layer interaction in unsteady transonic flow

Bron, Olivier January 2003 (has links)
A prerequisite for aeroelastic stability prediction inturbomachines is the understanding of the fluctuatingaerodynamic forces acting on the blades. Unsteady transonicflows are complex because of mutual interactions betweentravelling pressure waves, outlet disturbances, shock motion,and fluctuating turbulent boundary layers. Complex phenomenaappear in the shock/boundary layer region and produce phaselags and high time harmonics, which can give a significantcontribution to the overall unsteady lift and torque, andtherefore affect flutter boundaries, cause large localstresses, or even severely damage the turbomachine. The present research work is concerned with theunderstanding of phenomena associated with travelling waves innon-uniform transonic flows and how they affect the unsteadypressure distribution on the surface as well as the far fieldradiated sound. In similitude with turbomachines potentialinteraction, the emphasis was put on the unsteady interactionof upstream propagating acoustic waves with an oscillatingshock in 2D and 3D nozzle flows. Both numerical andexperimental studies are carried out and compared with eachother. Results shows that the unsteady pressure distribution, bothon the bump surface and within the channel, results from thesuperposition of upstream and downstream propagating waves. Itis believed that outlet pressure perturbations propagateupstream in the nozzle, interact in the high subsonic flowregion according to the acoustic blockage theory, and arepartly reflected or absorbed by the oscillating shock,depending on the frequency of the perturbations and theintensity of the SBLI. Furthermore the shock motion amplitudeis found to be related to the mean flow gradients and localwave length of the perturbations rather than to the shockboundary layer interaction. The phase angle between incomingpressure perturbations and the shock motion increases with theperturbation frequency but also depends on the intensity of theSBLI. Additionally the phase angle "shift" observed underneaththe shock location linearly increases with the perturbationfrequency and the shock strength. Such phase shift is criticalregarding aeroelastic stability and might have a significantimpact on the phase angle of the overall aerodynamic forceacting on the blade and shift the aerodynamic damping fromstable to exciting. <b>Keywords:</b>Shock Boundary Layer Interaction, ShockMotion, Unsteady Flows, Nozzle Flows, Potential Interaction,Back Pressure Perturbations.
2

Numerical and Experimental study of shock boundary layer interaction in unsteady transonic flow

Bron, Olivier January 2003 (has links)
<p>A prerequisite for aeroelastic stability prediction inturbomachines is the understanding of the fluctuatingaerodynamic forces acting on the blades. Unsteady transonicflows are complex because of mutual interactions betweentravelling pressure waves, outlet disturbances, shock motion,and fluctuating turbulent boundary layers. Complex phenomenaappear in the shock/boundary layer region and produce phaselags and high time harmonics, which can give a significantcontribution to the overall unsteady lift and torque, andtherefore affect flutter boundaries, cause large localstresses, or even severely damage the turbomachine.</p><p>The present research work is concerned with theunderstanding of phenomena associated with travelling waves innon-uniform transonic flows and how they affect the unsteadypressure distribution on the surface as well as the far fieldradiated sound. In similitude with turbomachines potentialinteraction, the emphasis was put on the unsteady interactionof upstream propagating acoustic waves with an oscillatingshock in 2D and 3D nozzle flows. Both numerical andexperimental studies are carried out and compared with eachother.</p><p>Results shows that the unsteady pressure distribution, bothon the bump surface and within the channel, results from thesuperposition of upstream and downstream propagating waves. Itis believed that outlet pressure perturbations propagateupstream in the nozzle, interact in the high subsonic flowregion according to the acoustic blockage theory, and arepartly reflected or absorbed by the oscillating shock,depending on the frequency of the perturbations and theintensity of the SBLI. Furthermore the shock motion amplitudeis found to be related to the mean flow gradients and localwave length of the perturbations rather than to the shockboundary layer interaction. The phase angle between incomingpressure perturbations and the shock motion increases with theperturbation frequency but also depends on the intensity of theSBLI. Additionally the phase angle "shift" observed underneaththe shock location linearly increases with the perturbationfrequency and the shock strength. Such phase shift is criticalregarding aeroelastic stability and might have a significantimpact on the phase angle of the overall aerodynamic forceacting on the blade and shift the aerodynamic damping fromstable to exciting.</p><p><b>Keywords:</b>Shock Boundary Layer Interaction, ShockMotion, Unsteady Flows, Nozzle Flows, Potential Interaction,Back Pressure Perturbations.</p>
3

Formal Approaches to Globally Asynchronous and Locally Synchronous Design

Xue, Bin 30 September 2011 (has links)
The research reported in this dissertation is motivated by two trends in the system-on-chip (SoC) design industry. First, due to the incessant technology scaling, the interconnect delays are getting larger compared to gate delays, leading to multi-cycle delays in communication between functional blocks on the chip, which makes implementing a synchronous global clock difficult, and power consuming. As a result, globally asynchronous and locally synchronous (GALS) designs have been proposed for future SoCs. Second, due to time-to-market pressure, and productivity gain, intellectual property (IP) block reuse is a rising trend in SoC design industry. Predesigned IPs may already be optimized and verified for timing for certain clock frequency, and hence when used in an SoC, GALS offers a good solution that avoids reoptimizing or redesigning the existing IPs. A special case of GALS, known as Latency-Insensitive Protocol (LIP) lets designers adopt the well-understood and developed design flow of synchronous design while solving the multi-cycle latency at the interconnects. The communication fabrics for LIP are synchronous pipelines with hand shaking. However, handshake based protocol has complex control logics and the unnecessary handshake brings down the system's throughput. That is why scheduling based LIP was proposed to avoid the hand-shakes by pre-calculated clock gating sequences for each block. It is shown to have better throughput and easier to implement. Unfortunately, static scheduling only exists for bounded systems. Therefore, this type of design in literatures restrict their discussions to systems whose graphic representation has a single strongly connected component (SCC), which by the theory is bounded. This dissertation provides an optimization design flow for LIP synthesis with respect to back pressure, throughput and buffer sizes. This is based on extending the scheduled LIP with minimum modifications to render it general enough to be applicable to most systems, especially those with multiple SCCs. In order to guarantee the design correctness, a formal framework that can analyze concurrency and prevent fallacious behaviors such as overflow, deadlock etc., is required. Among many formal models of concurrency used previously in asynchronous system design, marked graphs, periodic clock calculus and polychrony are chosen for the purpose of modeling, analyzing and verifying in this work. Polychrony, originally developed for embedded software modeling and synthesis, is able to specify multi-rate interfaces. Then a synchronous composition can be analyzed to avoid incompatibly and combinational loops which causes incorrect GALS distribution. The marked graph model is a good candidate to represent the interconnection network which is quite suitable for modeling the communication and synchronizations in LIP. The periodic clock calculus is useful in analyzing clock gating sequences because periodic clock calculus easily captures data dependencies, throughput constraints as well as buffer sizes required for synchronization. These formal methods help establish a formally based design flow for creating a synchronous design and then transforming it into a GALS implementation either using LIP or in a more general GALS mechanisms. / Ph. D.
4

Measurement and resource allocation problems in data streaming systems

Zhao, Haiquan 26 April 2010 (has links)
In a data streaming system, each component consumes one or several streams of data on the fly and produces one or several streams of data for other components. The entire Internet can be viewed as a giant data streaming system. Other examples include real-time exploratory data mining and high performance transaction processing. In this thesis we study several measurement and resource allocation optimization problems of data streaming systems. Measuring quantities associated with one or several data streams is often challenging because the sheer volume of data makes it impractical to store the streams in memory or ship them across the network. A data streaming algorithm processes a long stream of data in one pass using a small working memory (called a sketch). Estimation queries can then be answered from one or more such sketches. An important task is to analyze the performance guarantee of such algorithms. In this thesis we describe a tail bound problem that often occurs and present a technique for solving it using majorization and convex ordering theories. We present two algorithms that utilize our technique. The first is to store a large array of counters in DRAM while achieving the update speed of SRAM. The second is to detect global icebergs across distributed data streams. Resource allocation decisions are important for the performance of a data streaming system. The processing graph of a data streaming system forms a fork and join network. The underlying data processing tasks consists of a rich set of semantics that include synchronous and asynchronous data fork and data join. The different types of semantics and processing requirements introduce complex interdependence between various data streams within the network. We study the distributed resource allocation problem in such systems with the goal of achieving the maximum total utility of output streams. For networks with only synchronous fork and join semantics, we present several decentralized iterative algorithms using primal and dual based optimization techniques. For general networks with both synchronous and asynchronous fork and join semantics, we present a novel modeling framework to formulate the resource allocation problem, and present a shadow-queue based decentralized iterative algorithm to solve the resource allocation problem. We show that all the algorithms guarantee optimality and demonstrate through simulation that they can adapt quickly to dynamically changing environments.
5

Congestion control and routing over challenged networks

Ryu, Jung Ho 01 February 2012 (has links)
This dissertation is a study on the design and analysis of novel, optimal routing and rate control algorithms in wireless, mobile communication networks. Congestion control and routing algorithms upto now have been designed and optimized for wired or wireless mesh networks. In those networks, optimal algorithms (optimal in the sense that either the throughput is maximized or delay is minimized, or the network operation cost is minimized) can be engineered based on the classic time scale decomposition assumption that the dynamics of the network are either fast enough so that these algorithms essentially see the average or slow enough that any changes can be tracked to allow the algorithms to adapt over time. However, as technological advancements enable integration of ever more mobile nodes into communication networks, any rate control or routing algorithms based, for example, on averaging out the capacity of the wireless mobile link or tracking the instantaneous capacity will perform poorly. The common element in our solution to engineering efficient routing and rate control algorithms for mobile wireless networks is to make the wireless mobile links seem as if they are wired or wireless links to all but few nodes that directly see the mobile links (either the mobiles or nodes that can transmit to or receive from the mobiles) through an appropriate use of queuing structures at these selected nodes. This approach allows us to design end-to-end rate control or routing algorithms for wireless mobile networks so that neither averaging nor instantaneous tracking is necessary, as we have done in the following three networks. A network where we can easily demonstrate the poor performance of a rate control algorithm based on either averaging or tracking is a simple wireless downlink network where a mobile node moves but stays within the coverage cell of a single base station. In such a scenario, the time scale of the variations of the quality of the wireless channel between the mobile user and the base station can be such that the TCP-like congestion control algorithm at the source can not track the variation and is therefore unable to adjust the instantaneous coding rate at which the data stream can be encoded, i.e., the channel variation time scale is matched to the TCP round trip time scale. On the other hand, setting the coding rate for the average case will still result in low throughput due to the high sensitivity of the TCP rate control algorithm to packet loss and the fact that below average channel conditions occur frequently. In this dissertation, we will propose modifications to the TCP congestion control algorithm for this simple wireless mobile downlink network that will improve the throughput without the need for any tracking of the wireless channel. Intermittently connected network (ICN) is another network where the classic assumption of time scale decomposition is no longer relevant. An intermittently connected network is composed of multiple clusters of nodes that are geographically separated. Each cluster is connected wirelessly internally, but inter-cluster communication between two nodes in different clusters must rely on mobile carrier nodes to transport data between clusters. For instance, a mobile would make contact with a cluster and pick up data from that cluster, then move to a different cluster and drop off data into the second cluster. On contact, a large amount of data can be transferred between a cluster and a mobile, but the time duration between successive mobile-cluster contacts can be relatively long. In this network, an inter-cluster rate controller based on instantaneously tracking the mobile-cluster contacts can lead to under utilization of the network resources; if it is based on using long term average achievable rate of the mobile-cluster contacts, this can lead to large buffer requirements within the clusters. We will design and analyze throughput optimal routing and rate control algorithm for ICNs with minimum delay based on a back-pressure algorithm that is neither based on averaging out or tracking the contacts. The last type of network we study is networks with stationary nodes that are far apart from each other that rely on mobile nodes to communicate with each other. Each mobile transport node can be on one of several fixed routes, and these mobiles drop off or pick up data to and from the stationaries that are on that route. Each route has an associated cost that much be paid by the mobiles to be on (a longer route would have larger cost since it would require the mobile to expend more fuel) and stationaries pay different costs to have a packet picked up by the mobiles on different routes. The challenge in this type of network is to design a distributed route selection algorithm for the mobiles and for the stationaries to stabilize the network and minimize the total network operation cost. The sum cost minimization algorithm based on average source rates and mobility movement pattern would require global knowledge of the rates and movement pattern available at all stationaries and mobiles, rendering such algorithm centralized and weak in the presence of network disruptions. Algorithms based on instantaneous contact, on the contrary, would make them impractical as the mobile-stationary contacts are extremely short and infrequent. / text
6

Rekonstrukce turbogenerátoru TG 5 v Elektrárně Opatovice / Reconstruction of the turbogenerator TG 5 in Opatovice Power Plant

Rak, Vítek January 2018 (has links)
This thesis discusses the reconstruction of the turbogenerator TG5 of the Elektrárny Opatovice and introduces options of technical solutions for power central of combined heat and electricity production. First section describes the differences between back-pressure and condensing turbines. Next section briefly introduces the company Elektrárny Opatovice a.s. with the description of the current back-pressure turbine TG5, which is near end of it life cycle and is to be reconstructed in following years. Based on the technical-economic analysis of the operation of the current TG5, possible benefits of new technical solutions are proposed.
7

Kogenerační zdroj / Cogeneration Unit

Jančok, Lukáš January 2013 (has links)
V diplomové práci je krok po kroce vypracováno řešení zabezpečení energetického zdroje pro typické město v Sibiřské oblasti. Data, která tvoří zadání, byla získána od zákazníka pomocí dotazníku, protože pro nás oblast v čase vypracování nebyla dostupná. Na základě informací o aktuální energetické situaci, obyvatelstvu a dřevospracujícímu průmyslu je vybrána vhodná technologie pro zabezpečení tepla a elektrické energie. Druh zdroje byl vybrán dle dostupného paliva a následně byl proveden výpočet a design en- ergetického zdoje založeného na Rankine Clausiovém cyklu. Řešení obsahuje technický i ekonomický návrh. Technické řešení ukázalo, že nejdůležitější parametry jsou spolehlivost, bezpečnost a jednoduchost řešení. Design sítí, přídavných zařízení a plánování údržby není obsahem této práce. O dalších projektových krocích pojednává závěr.
8

Parní turbína 8 MW / Steam Turbine 8 MW

Flimel, Lukáš January 2015 (has links)
The master´s thesis is focused on detail calculation of back-pressure steam turbine with reactionary blades, with non-control exctraction line with electrical output 8 MW. Thermodynamic calculation of flow stage (canal) and stress calculation of rotor blade carrier of regulation stage, is carried out in firts part of master´s thesis. Preliminary turbine design and description, is carried out in second part of master´s thesis. Master´s thesis tasks has been created in EKOL spol. s.r.o.
9

Parní protitlaková turbína s integrovanou převodovkou pro pohon kompresoru / Steam backpressure turbine with integrated gearbox for the drive of the compressor

Votoupal, Adam January 2019 (has links)
The master’s thesis deals with the design of steam back-pressure turbine with integrated gearbox for compressor drive according to given parameters. The first part of the thesis is literature review which comprises a general division of steam turbines, especially a description of the types of blading. Furthermore, it describes the conversion of energy in the steam turbine stage in detail. The second part of the thesis contains calculations and includes the design of the flow parts of the steam turbine, the design of the outlet and the integrated gearbox. Attached to this work are drawings of a simplified section of the steam turbine with a gearbox and the layout drawing of the machine.

Page generated in 0.1038 seconds