51 |
Calibration of a NaI (Tl) detector for low level counting of naturally occurring radionuclides in soilNoncolela, Sive Professor January 2011 (has links)
>Magister Scientiae - MSc / The Physics Department at the University of the Western Cape and the Environmental Physics group at iThemba labs have been conducting radiometric studies on both land and water. In this study a 7.5 cm X 7.5 cm NaI (Tl) detector was used to study activity concentrations of primordial radionuclides in soil and sand samples. The detector and the sample were placed inside a lead castle to reduce background in the laboratory from the surroundings such as the wall and the floor. The samples were placed inside a 1 L Marinelli beaker which surrounds the detector for better relative efficiency as almost the whole sample is exposed to the detector. Additional lead bricks were placed below the detector to further reduce the background by 20%. The NaI detector is known to be prone to spectral drift caused by temperature differences inside and around the detector. The spectral drift was investigated by using a ¹³⁷Cs source to monitor the movements in the 662 keV peak. The maximum centroid shift was about 4 keV (for a period of 24 hours) which is enough to cause disturbances in spectral fitting. There was no correlation between the centroid shift and small room temperature fluctuations of 1.56 ºC. A Full Spectrum Analysis (FSA) method was used to extract the activity concentrations of ²³⁸U, ²³²Th and ⁴⁰K from the measured data. The FSA method is different from the usual Windows Analysis (WA) as it uses the whole spectrum instead of only putting a ‘window’ around the region of interest to measure the counts around a certain energy peak. The FSA method uses standard spectra corresponding to the radionuclides being investigated, and is expected to have an advantage when low-activity samples are measured. The standard spectra are multiplied by the activity concentrations and then added to fit the measured spectrum. Accurate concentrations are then extracted using a chi-squared (χ²) minimization procedure. Eight samples were measured in the laboratory using the NaI detector and analyzed using the FSA method. The samples were measured for about 24 hours for good statistics. Microsoft Excel and MATLAB were used to calculate the activity concentrations. The ²³⁸U activity concentration values varied from 14 ± 1 Bq/kg (iThemba soil, HS6) to 256 ± 10 Bq/kg (Kloof sample). The ²³²Th activity concentration values varied from 7 ± 1 Bq/kg (Anstip beach sand) to 53 ± 3 Bq/kg (Rawsonville soil #B31). The ⁴⁰K activity concentration values varied from 60 ± 20 Bq/kg (iThemba soil, HS6) to 190 ± 20 Bq/kg (Kloof sample). The χ² values also varied from sample to sample with the lowest being 12 (Anstip beach sand) and the highest (for samples without contamination of anthropogenic nuclei) being 357 (Rawsonville soil #B28). A high χ² value usually represents incomplete gain drift corrections, improper set of fitting functions, proper inclusion of coincidence summing or the presence of anthropogenic (man made) radionuclei in the source [Hen03]. Activity concentrations of ⁴⁰K, ²³²Th and ²³⁸U were measured at four stationary points on the Kloof mine dump. The fifth stationary point was located on the Southdeep mine dump. These measurements were analysed using the FSA method and fitting by "eye" the standard spectra to the measured spectra using Microsoft Excel. These values were then compared to values obtained using an automated minimization procedure in MATLAB. There was a good correlation between these results except for ²³²Th which had higher concentrations when MATLAB was used, where 16 Bq/kg was the average value in Excel and 24 Bq/kg was the average value in MATLAB.
|
52 |
A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck DataOmori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., Zahn, O. 07 November 2017 (has links)
We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg(2) SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader l coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential C-L(phi phi), and compare it to the theoretical prediction for a.CDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of 0.95(-0.06)(+0.06) (stat.)(-0.01)(+0.01)+ (sys.). The null hypothesis of no lensing is rejected at a significance of 24 sigma. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, C-L(phi) G, between the SPT+ Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit C-L(phi G) to a power law of the form p(L) = a(L/L-0)(-b) with a, L-0, and b fixed, and find eta(phi G) = C-L(phi G)/p(L) = 0.94(-0.04)(+0.04), which is marginally lower, but in good agreement with eta(phi G) = 1.00-(+0.02)(0.01), the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over similar to 67% of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg(2) field.
|
53 |
The APEX-SZ experiment : observations of the Sunyaev Zel'dovich effectKennedy, James, 1983- January 2008 (has links)
No description available.
|
54 |
"Linhas de Estrutura Fina em Absorção no Espectro de QSOs" / Fine-structure absorption lines in QSO spectra.Silva, Alex Ignácio da 21 May 1999 (has links)
Neste trabalho realizamos cálculos teóricos das razões de povoamento dos níveis de estrutura fina do C0, C+ e Si+ considerando em detalhes os efeitos dos diversos mecanismos de excitação: colisões, fluorescência e a radiação cósmica de fundo. Empregamos dados atômicos recentes coletados na literatura na resolução das equações de equilíbrio estatístico pertinentes. A confrontação das razões de povoamento calculadas com as razões de densidades de coluna observadas disponíveis na literatura nos permite obter informações acerca das condições físicas (densidades volumétricas, intensidade de um campo de radiação UV presente, temperatura da radiação cósmica de fundo) e propriedades (dimensão característica e massa) dos sistemas damped Lyman a e Lyman Limit vistos em absorção no espectro de QSOs. Como um aparte, e por sua relação com o tema do trabalho, também investigamos a lei de temperatura da radiação cósmica de fundo. / In this work we perform theoretical calculations of the population ratios of fine structure levels of C0, C+ and Si+ considering in detail the effect of the various excitation mechanisms: collisions, fluorescence and the cosmic background radiation. We employ recent atomic data, gathered in the literature, to solve the related statistical equilibrium equations. The comparison of the calculated population ratios with the observed column densities ratios available in the literature allows us to obtain informations regarding the physical conditions (volume densities, intensity of a UV radiation field present, temperature of the cosmic background radiation) and properties (characteristic size and mass) of damped Lyman a and Lyman Limit systems seen in absorption in spectra of QSOs. We also investigate the temperature law of the cosmic background radiation, which bears a tight relationship with this work.
|
55 |
The natural background gamma radiation exposure in the metropolitan area of the Valley of Mexico /Jones, Mary Feild. January 1982 (has links)
Thesis (Ph. D.)--University of Texas Health Science Center at Houston, School of Public Health, 1982. / Dissertation Abstracts International order no. 83-16537. Includes bibliographical references (leaves 181-192).
|
56 |
Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring SystemsRyan, Christopher Michael 2011 May 1900 (has links)
The dissolution of the Soviet Union coupled with the growing sophistication of international terror organizations has brought about a desire to ensure that a sound infrastructure exists to interdict smuggled nuclear material prior to leaving its country of origin. To combat the threat of nuclear trafficking, radiation portal monitors (RPMs) are deployed around the world to intercept illicit material while in transit by passively detecting gamma and neutron radiation. Portal monitors in some locations have reported abnormally high gamma background count rates. The higher background data has been attributed, in part, to the concrete surrounding the portal monitors. Higher background can ultimately lead to more material passing through the RPMs undetected.
This work is focused on understanding the influence of the concrete surrounding the monitors on the total gamma ray background for the system. This research employed a combination of destructive and nondestructive analytical techniques with computer simulations to form a model that may be adapted to any RPM configuration. Six samples were taken from three different composition concrete slabs. The natural radiologcal background of these samples was determined using a high-purity germanium (HPGe) detector in conjunction with the Canberra In-Situ Object Counting System (ISOCS™) and Genie™ 2000 software packages. The composition of each sample was determined using thermal and fast neutron activation analysis (NAA) techniques.
The results from these experiments were incorporated into a Monte Carlo N-Particle (MNCP) photon transport simulation to determine the expected gamma ray count rate in the RPM due to the concrete.
The results indicate that a quantitative estimate may be possible if the experimental conditions are optimized to eliminate sources of uncertainty. Comparisons of actual and simulated count rate data for 137Cs check sources showed that the model was accurate to within 15%. A comparison of estimated and simulated count rates in one concrete slab showed that the model was accurate to within 4%. Subsequent sensitivity analysis showed that if the elemental concentrations are well known, the carbon and hydrogen content could be easily estimated. Another sensitivity analysis revealed that the small fluctuations in density have a minimal impact on the gamma count rate.
The research described by this thesis provides a method by which RPM end users may quantitatively estimate the expected gamma background from concrete foundations beneath the systems. This allows customers to adjust alarm thresholds to compensate for the elevated background due to the concrete, thereby increasing the probability of intercepting illicit radiological and nuclear material.
|
57 |
Determination and Mitigation of Precipitation Effects on Portal Monitor Gamma Background LevelsRevis, Stephen 2012 May 1900 (has links)
The purpose of this project is to establish a correlation between precipitation and background gamma radiation levels at radiation portal monitors (RPM) deployed
at various ports worldwide, and to devise a mechanism by which the effects of these precipitation-induced background fluctuations could be mitigated. The task of detecting special nuclear materials (SNM) by passive gamma spectroscopy is very difficult due to the low signal-to-noise ratio observed in an uncontrolled environment. Due to their low activities and the low energies of their characteristic gamma rays, the signals from many types of SNM can easily be obscured by background radiation. While this can be somewhat mitigated by taking regular background radiation measurements, even this cannot resolve the issue if background levels change suddenly and dramatically. Furthermore, any increase in background count rate will increase the statistical uncertainty of the count rate measurement, and thus decrease the minimum quantity of SNM that can be reliably detected. Existing research suggests that the advent of precipitation is the culprit behind many such large and sudden increases in background radiation. The correlation between precipitation and background levels was explored by in-situ testing on a full-scale portal monitor at Oak Ridge National Laboratory, and by comparing previously recorded background radiation and weather data from portal monitors located at ports worldwide. The first was utilized to determine the frequency and magnitude at which precipitation introduces background activity, and the second was used to quantify the effects of various quantities and types of precipitation in various parts of the world. Once this analysis was complete, various methods of mitigating these changes in background radiation were developed based on the collected data.
Precipitation was found to be the most common culprit for rapid increases in background count rate, and was attributable to 85.6% of all such events. Based on extensive simulation via the Origen-ARP and MCNP software, a response function for the portal monitor was developed, and an algorithm designed to predict the contribution of the precipitation to the background count rate was developed. This algorithm was able to attenuate the contribution of precipitation to the background count rate by an average of 45% with very minimal over-correction. Such an algorithm could be utilized to adjust the alarm levels of the RPM to better allow it to compensate for the rise and fall in background count rate due to precipitation.
Additionally, the relative contribution of precipitation which landed at various distances from the portal monitor to the increase in background count rate was measured via simulation. This simulation demonstrated that 37.2% of all background counts were due to the radon daughters which landed within a 2.76 m radius from the center of the portal monitor. This radius encompasses the area between the two portals. Based on this, several designs for shielding were simulated, the most successful of which was a concrete structure that was able to attenuate 71.3% of the background radiation caused by a given precipitation event at a materials cost of approximately $6,000 per RPM. This method is recommended as the primary means of mitigating this issue.
|
58 |
Observational signatures of the first stars : from the near infrared background to Lyman-[alpha] emittersFernandez, Elizabeth Rose 11 September 2012 (has links)
Not available / text
|
59 |
Quantum cosmological correlations in inflating universe: effect of gravitational fluctuation due to fermion, gauge, and others [sic] loopsChaicherdsakul, Kanokkuan 28 August 2008 (has links)
Not available
|
60 |
Microbeam design in radiobiological researchHollis, Kevin John January 1995 (has links)
Recent work using low-doses of ionising radiations, both in vitro and in ViVO, has suggested that the responses of biological systems in the region of less than 1 Gray may not be predicted by simple extrapolation from the responses at higher doses. Additional experiments, using high-LET radiations at doses of much less than one alpha particle traversal per cell nucleus, have shown responses in a greater number of cells than have received a radiation dose. These findings, and increased concern over the effects of the exposure of the general population to low-levels of background radiation, for example due to radon daughters in the lungs, have stimulated the investigation of the response of mammalian cells to ionising radiations in the extreme low-dose region. In all broad field exposures to particulate radiations at low-dose levels an inherent dose uncertainty exists due to random counting statistics. This dose variation produces a range of values for the measured biological effect within the irradiated population, therefore making the elucidation of the dose-effect relationship extremely difficult. The use of the microbeam irradiation technique will allow the delivery of a controlled number of particles to specific targets within an individual cell with a high degree of accuracy. This approach will considerably reduce the level of variation of biological effect within the irradiated cell population and will allow low-dose responses of cellular systems to be determined. In addition, the proposed high spatial resolution of the microbeam developed will allow the investigation of the distribution of radiation sensitivity within the cell, to provide a better understanding of the mechanisms of radiation action. The target parameters for the microbeam at the Gray Laboratory are a spatial resolution of less than 1 urn and a detection efficiency of better than 99 %. The work of this thesis was to develop a method of collimation, in order to produce a microbeam of 3.5 MeV protons, and to develop a detector to be used in conjunction with the collimation system. In order to determine the optimum design of collimator necessary to produce a proton microbeam, a computer simulation based upon a Monte-Carlo simulation code, written by Dr S J Watts, was developed. This programme was then used to determine the optimum collimator length and the effects of misalignment and divergence of the incident proton beam upon the quality of the collimated beam produced. Designs for silicon collimators were produced, based upon the results of these simulations, and collimators were subsequently produced for us using techniques of micro-manufacturing developed in the semiconductor industry. Other collimator designs were also produced both in-house and commercially, using a range of materials. These collimators were tested to determine both the energy and spatial resolutions of the transmitted proton beam produced. The best results were obtained using 1.6 mm lengths of 1.5 µm diameter bore fused silica tubing. This system produced a collimated beam having a spatial resolution with 90 % of the transmitted beam lying within a diameter of 2.3 ± 0.9 µm and with an energy spectrum having 75 % of the transmitted protons within a Gaussian fit to the full-energy peak. Detection of the transmitted protons was achieved by the use of a scintillation transmission detector mounted over the exit aperture of the collimator. An approximately 10 urn thick ZnS(Ag) crystal was mounted between two 30 urn diameter optical fibres and the light emitted from the crystal transmitted along the fibres to two photomultiplier tubes. The signals from the tubes were analyzed, using coincidence counting techniques, by means of electronics designed by Dr B Vojnovic. The lowest counting inefficiencies obtained using this approach were a false positive count level of 0.8 ± 0.1 % and an uncounted proton level of 0.9 ± 0.3 %. The elements of collimation and detection were then combined in a rugged microbeam assembly, using a fused silica collimator having a bore diameter of 5 urn and a scintillator crystal having a thickness of - 15 µm. The microbeam produced by this initial assembly had a spatial resolution with 90 % of the transmitted protons lying within a diameter of 5.8 ± 1.6 µm, and counting inefficiencies of 0.27 ± 0.22 % and 1.7 ± 0.4 % for the levels of false positive and missed counts respectively. The detector system in this assembly achieves the design parameter of 99 % efficiency, however, the spatial resolution of the beam is not at the desired I urn level. The diameter of the microbeam beam produced is less than the nuclear diameter of many cell lines and so the beam may be used to good effect in the low-dose irradiation of single cells. In order to investigate the variation in sensitivity within a cell the spatial resolution of the beam would require improvement. Proposed methods by which this may be achieved are described.
|
Page generated in 0.0856 seconds