• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 21
  • 9
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 153
  • 24
  • 22
  • 19
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hyperspectral measurement and modelling of marine remote sensing reflectance

Wood, Peter January 1998 (has links)
No description available.
12

Azimuth modulation of the radar backscatter at near-normal incidence /

Greenwood, Andrew D., January 1995 (has links) (PDF)
(M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering. / Includes bibliographical references (leaves 63-64).
13

The spectral backscattering properties of marine particles /

Whitmire, Amanda L. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 128-136). Also available on the World Wide Web.
14

An algorithm for the extraction of ocean wave spectra from narrow beam HF radar backscatter /

Howell, Randy Keith, January 1990 (has links)
Thesis (M.Eng.) -- Memorial University of Newfoundland. / Typescript. Bibliography: leaves 103-108. Also available online.
15

Characterization of electromagnetic backscatter from moving tracked vehicles /

Gross, Francis B. January 1982 (has links)
No description available.
16

The use of a structured laser light system to ascertain three dimensional measurements of underwater work sites

Spours, J. January 2000 (has links)
No description available.
17

A Study of WDM Passive Optical Network with Raman Amplification

Shih, Wei-Tong 22 July 2008 (has links)
Optical fiber access technology is the key to realize a broadband communication for everyone, and the passive optical network (PON) is enabling customers to enjoy high-speed internet access now. As the demand for the broadband access is still growing, a study to find out technologies to realize wider bandwidth for the access system is quite important. At this moment, wavelength division multiplexing (WDM) PON is the most promising technology for the future optical fiber access system. Current PON system covers a reach of within 20km from a central office, because the market of the access system is focusing on well-populated area. It is required to extend the reach of the PON system to enhance the applicable area, because there are many regions in the world where are not so highly populated. Therefore, this master thesis is focusing on to enhance the reach of the WDM-PON system. A little more specifically, a single fiber bidirectional 80 km WDM PON system with symmetric up-and-downstream data rate of 10.66Gb/s is reported. In order to enhance the reach of the WDM-PON system, Raman amplifier is utilized. As the Raman amplifier can amplify both directional optical signals simultaneously, it is quite effective to enhance the reach of the WDM-PON system. Even though, there are several effects that cause performance degradations of the system by introducing the Raman amplifier. It is important to clarify such effects and to provide solutions. This thesis discusses these issues also. One factor to degrade the system performance is the Rayleigh backscattering. As the Raman amplifier amplifies the Rayleigh backscattering, it interferes to the signal and causes the crosstalk penalty. At first, an experimental study has been conducted to clarify the significance of the Rayleigh backscattering, and the method to overcome the crosstalk penalty is presented. Then, another experiment to realize 80km WDM PON system with Raman amplifier is conducted, and it demonstrates a feasibility of such system. Finally, this thesis is concluded by a successful demonstration of the WDM-PON system with an enhanced reach.
18

Backscattering enhancement from plasmon polaritons on rough metal surfaces

West, Charles Stanley 12 1900 (has links)
No description available.
19

Application of coherence theory to enhanced backscatter and superresovling optical imaging systems

Welch, Gisele Sawaya 12 1900 (has links)
No description available.
20

Distributed Optical Fiber Vibration Sensor Based on Rayleigh Backscattering

Qin, Zengguang 01 May 2013 (has links)
This thesis includes studies of developing distributed optical fiber vibration sensor based on Rayleigh backscattering with broad frequency response range and high spatial resolution. Distributed vibration sensor based on all-polarization-maintaining configurations of the phase-sensitive optical time domain reflectometry (OTDR) is developed to achieve high frequency response and spatial resolution. Signal fading and noise induced by polarization change can be mitigated via polarization-maintaining components. Pencil-break event is tested as a vibration source and the layout of the sensing fiber part is designed for real applications. The spatial resolution is 1m and the maximum distance between sensing fiber and vibration event is 18cm. Wavelet denoising method is introduced to improve the performance of the distributed vibration sensor based on phase-sensitive OTDR in standard single-mode fiber. Noise can be reduced more effectively by thresholding the wavelet coefficient. Sub-meter spatial resolution is obtained with a detectable frequency up to 8 kHz. A new distributed vibration sensor based on time-division multiplexing (TDM) scheme is also studied. A special probe waveform including a narrow pules and a quasi-continuous wave can combine the conventional phase-sensitive OTDR system and polarization diversity scheme together in one single-mode fiber without crosstalk. Position and frequency of the vibration can be determined by these two detection systems consecutively in different time slots. Vibration event up to 0.6 MHz is detected with 1m spatial resolution along a 680m single-mode sensing fiber. Continuous wavelet transform (CWT) is investigated to study the non-stationary vibration events measured by our phase OTDR system. The CWT approach can access both frequency and time information of the vibration event simultaneously. Distributed vibration measurements of 500Hz and 500Hz to 1 kHz sweep events over 20 cm fiber length are demonstrated using a single-mode fiber. Optical frequency-domain reflectometry (OFDR) for vibration sensing is proposed for the first time. The local Rayleigh backscatter spectrum shift in time sequence could be used to determine dynamic strain information at a specific position of the vibrated state with respect to that of the non-vibrated state. Measurable frequency range of 0-32 Hz with the spatial resolution of 10 cm is demonstrated along a 17 m fiber.

Page generated in 0.0713 seconds