• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Využití magnetických mikročástic pro izolaci bakteriální DNA / The use of magnetic microparticles for bacterial DNA isolation

Hrudíková, Radka January 2012 (has links)
The aim of the work was testing of two types of magnetic mikrosheres functionalised with –COOH groups for the isolation of bacterial DNA. Isolation of DNA was carried out from crude lysates of cells prepared from pure culture of Lactobacillus paracassei RL-10 in the presence of binding buffer with 2 M NaCl and 16% PEG 6000. The influence of RNA degradation by enzyme RNase A on the amount of isolated DNA was investigated. It was estimated that RNA degradation affects the amount of DNA isolated. The amount of DNA depended on the type of microparticles. Higher amounts of DNA were isolated using particles with higher content of carboxyl groups. DNA applicable in PCR was isolated using both types of microsheres. In next part of the work, microparticles functionalised with –NH2 groups were used to DNA isolation using electrostatic forces. It was shown that buffer with lower pH is suitable for DNA adsorption onto magnetic microparticles.
12

Interakce plasmidových DNA se sloučeninami lanthanoidů / Plasmid DNAs interactions with lanthanoide compounds

Budko, Kateryna January 2016 (has links)
Recently much attention is given to lanthanides and their complexes as excellent catalysts for cleavage of nucleic acids. The thesis has been focused on the cleavage of plasmid and bacterial DNA by ions Nd3+ and Y3+ and by different carriers containing the lanthanide compounds. The creation of single-stranded nicks and double-stranded ones in the plasmid DNA molecules was studied by agarose gel electrophoresis. Verification of the cleavage of bacterial DNA was made by polymerase chain reaction using primers specific for the domain Bacteria and genus and species-specific primers. The results will be used in the development of the method that will allow perfect carriers`s coverage verification with the magnetic perovskit nucleus and other carriers with the lanthanide compounds.
13

Izolace DNA s použitím nově syntetizovaných magnetických nosičů / DNA isolation using newly designed magnetic carriers

Machan, Radoslav January 2018 (has links)
Theoretical part of the master thesis was aimed on giving an overview of basic characteristics of magnetic particles, their morphology, basic methods of their synthesis, interaction with DNA and recent applications in biotechnology and biomedicine. The experimental part of thesis was aimed on application of new designed magnetic particles for isolation of both lactobacilli DNA and calf thymus DNA. Two types of magnetic beads were used: hyperbranched poly(glycidyl methacrylate-co-[2-(methacryloyloxy) ethoxy]acetic acid-co-ethylene dimethylacrylate) microbeads covered with amino groups (P(GMA-MOEAA-EDMA)-NH2) and magnetic non-porous poly(2-hydroxyethyl methacrylate) microbeads covered with carboxyl groups (P(HEMA-co-GMA)-COOH). For both types of microbeads two different protocols for preparation of separation mixtures with two different concentrations od poly(ethyleneglycol) 6000 (PEG 6000) as condensation agent were tested. Differences among both types of magnetic microbeads and DNAs used were found. It was shown that both types of microbeads are suitable for DNA isolation in the presence of 8% PEG 6000.
14

Das Leben in der napoleonischen Armee - interdisziplinäre Untersuchung eines Massengrabs aus Kassel, Hessen / The life in the napoleonic army - interdisciplinary investigation of a mass grave from Kassel, Hesse

von Grumbkow, Philipp 23 October 2013 (has links)
No description available.
15

Newer Insights On Structure, Function And Regulation Of Dps Protein From Mycobacterium smegmatis

Chowdhury, Rakhi Pait 06 1900 (has links)
The first chapter will provide an introduction to the physiology, pathogenesis and biology of mycobacteria. Host-pathogen interactions, different modes of resistance of the bacteria, adaptations for survival under nutrient and oxygen depleted conditions has been discussed. This is followed by a general discussion on gene expression and regulation in the microbe. The physiology of bacteria under stresses from the view of the transcriptional regulation of specific genes has also been discussed. The scope and objective of the present study in M. smegmatis covered in the thesis has been considered at the end. The next chapter discusses the characterization of msdps promoter in vivo with the help of reporter gene assay technologies. With the advent of promoterless E. coli-mycobacterium shuttle vectors, activity assays can be easily performed to characterize unknown upstream putative promoter sequences of genes. Both the 1 kb upstream as well as a 200bp upstream region of msdps gene has been characterized by. Primer extension analysis and subsequent site directed mutagenesis studies reveal +1 transcription start site and the promoter consensus sequence for the msdps gene respectively. Next chapter comprises of the method of constructing heterologous in vitro transcription machinery in mycobacteria. It is followed by characterization of transcription initiation at two dps promoters of M. smegmatis. A novel pull-down assay has been designed which enabled us to identify the sigma factors in the reconstituted RNA polymerases to be associated with the respective dps promoters and to compare the regulation of the two genes at transcription level. Further characterization through single round in vitro transcription at mycobacterial promoters has been attempted. The following two chapters provide some newer insights into the structure-function relationship of the first Dps molecule, MsDps (MsDps1) with respect to its DNA binding activity. The DNA binding activity is associated with the higher oligomeric form only. With the help of time resolved anisotropy and Förster Resonance Energy Transfer (FRET) experiments, we have monitored the nature of Dps dodecamer-DNA complex and mapped the distance between the N and C169 position in the absence and the presence of DNA. A new computational programme, Maximum Entropy Method (MEM) has been applied successfully to analyze data obtained from phase-modulation (Phi-M) lifetime experiments in order to get distribution of lifetime. In the last chapter a new method is adopted to predict amino acids important for stabilizing the interface in a trimeric structure. Subsequently, single and double amino acid mutants of the native MsDps protein has been constructed through site directed mutagenesis and are scored for the ability of the mutants to oligomerize under conditions similar to that of the native protein. This helped us to propose a hypothetical model of the overall mechanism of the protein oligomerization process in solution.
16

Topoisomerases from Mycobacteria : Insights into the Mechanism, Regulation and Global Modulatory Functions

Ahmed, Wareed January 2014 (has links) (PDF)
The eubacterial genome is maintained in a negatively supercoiled state which facilitates its compaction and storage in a small cellular space. Genome supercoiling can potentially influence various DNA transaction processes such as DNA replication, transcription, recombination, chromosome segregation and gene expression. Alterations in the genome supercoiling have global impact on the gene expression and cell growth. Inside the cell, the genome supercoiling is maintained judiciously by DNA topoisomerases to optimize DNA transaction processes. These enzymes solve the problems associated with the DNA topology by cutting and rejoining the DNA. Due to their essential cellular functions and global regulatory roles, DNA topoisomerases are fascinating candidates for the study of the effect of topology perturbation on a global scale. Genus Mycobacterium includes a large number of species including the well-studied Mycobacterium smegmatis (Msm) as well as various pathogens–Mycobacterium leprae, Mycobacterium abscessus and Mycobacterium tuberculosis (Mtb), the last one being the causative agent of the deadly disease Tuberculosis (TB), which claims millions of lives worldwide annually. The organism combats various stresses and alterations in its environment during the pathogenesis and virulence. During such adaptation, various metabolic pathways and transcriptional networks are reconfigured. Considering their global regulatory role, DNA topoisomerases and genome supercoiling may have an influence on the mycobacterial survival and adaptation. Biochemical studies from our laboratory have revealed several distinctive characteristics of mycobacterial DNA gyrase and topoisomerase I. DNA gyrase has been shown to be a strong decatenase apart from its characteristic supercoiling activity. Similarly, the mycobacterial topoisomerase I exhibits several distinct features such as the ability to bind both single- as well as double-stranded DNA, site specific DNA binding and absence of Zn2+ fingers required for DNA relaxation activity in other Type I enzymes. Although, efforts have been made to understand the biochemistry and mechanism of mycobacterial topoisomerases, in vivo significance and regulatory roles remain to be explored. The present study is aimed at understanding the mechanism, in vivo functions, regulation and genome wide distribution of mycobacterial topoisomerases. Chapter 1 of the thesis provides introduction on DNA topology, genome supercoiling and DNA topoisomerases. The importance of genome supercoiling and its regulatory roles has been discussed. Further, the regulation of topoisomerase activity and the role in the virulence gene regulation is described. Finally, a brief overview of Mtb genome, disease epidemiology, and pathogenesis is presented along with the description of the work on mycobacterial topoisomerases. In Chapter 2, the studies are directed to understand the DNA relaxation mechanism of mycobacterial Type IA topoisomerase which lack Zn2+ fingers. The N-terminal domain (NTD) of the Type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli TopoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial TopoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. It is elucidated that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the strand passage step of the catalysis. It is hypothesized that the loss of Zn2+ fingers from the mycobacterial TopoI could be associated with Zn2+ export and homeostasis. In Chapter 3, the studies have been carried out to understand the regulation of mycobacterial TopoI. Identification of Transcription Start Site (TSS) suggested the presence of multiple promoters which were found to be sensitive to genome supercoiling. The promoter activity was found to be specific to mycobacteria as the promoter(s) did not show activity in E. coli. Analysis of the putative promoter elements suggested the non-optimal spacing of the putative -35 and -10 promoter elements indicating the involvement of supercoiling for the optimal alignment during the transcription. Moreover, upon genome relaxation, the occupancy of RNA polymerase was decreased on the promoter region of topoI gene implicating the role of DNA topology in the Supercoiling Sensitive Transcription (SST) of TopoI gene from mycobacteria. The involvement of intrinsic promoter elements in such regulation has been proposed. In Chapter 4, the importance of TopoI for the Mtb growth and survival has been validated. Mtb contains only one Type IA topoisomerase (Rv3646c), a sole DNA relaxase in the cell, and hence a candidate drug target. To validate the essentiality of Mtb topoisomerase I for bacterial growth and survival, conditionally regulated strain of topoI in Mtb was generated. The conditional knockdown mutant exhibited delayed growth on agar plate and in liquid culture the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the Mtb growth and open up new avenues for targeting the enzyme. In Chapter 5, the influence of perturbation of TopoI activity on the Msm growth and physiology has been studied. Notably, Msm contains an additional DNA relaxation enzyme– an atypical Type II topoisomerase TopoNM. The TopoI depleted strain exhibited slow growth and drastic change in phenotypic characters. Moreover, the genome architecture was disturbed upon depletion of TopoI. Further, the proteomic and transcript analysis indicated the altered expression of the genes involved in central metabolic pathways and core DNA transaction processes in the mutant. The study suggests the importance of TopoI in the maintenance of cellular phenotype and growth characteristics of fast growing mycobacteria having additional topoisomerases. In Chapter 6, the ChIP-Seq method is used to decipher the genome wide distribution of the DNA gyrase, topoisomerase I (TopoI) and RNA polymerase (RNAP). Analysis of the ChIP-Seq data revealed the genome wide distribution of topoisomerases along with RNAP. Importantly, the signals of topoisomerases and RNAP was found to be co-localized on the genome suggesting their functional association in the twin supercoiled domain model, originally proposed by J. C. Wang. Closer inspection of the occupancy profile of topoisomerases and RNAP on transcription units (TUs) revealed their co-existence validating the topoisomerases occupancy within the twin supercoiled domains. On the genomic scale, the distribution of topoisomerases was found to be more at the ori domains compared to the ter domain which appeared to be an attribute of higher torsional stress at ori. The reappearance of gyrase binding at the ter domain (and the lack of it in the ter domain of E. coli) suggests a role for Mtb gyrase in the decatenation of the daughter chromosomes at the end of replication. The eubacterial genome is maintained in a negatively supercoiled state which facilitates its compaction and storage in a small cellular space. Genome supercoiling can potentially influence various DNA transaction processes such as DNA replication, transcription, recombination, chromosome segregation and gene expression. Alterations in the genome supercoiling have global impact on the gene expression and cell growth. Inside the cell, the genome supercoiling is maintained judiciously by DNA topoisomerases to optimize DNA transaction processes. These enzymes solve the problems associated with the DNA topology by cutting and rejoining the DNA. Due to their essential cellular functions and global regulatory roles, DNA topoisomerases are fascinating candidates for the study of the effect of topology perturbation on a global scale. Genus Mycobacterium includes a large number of species including the well-studied Mycobacterium smegmatis (Msm) as well as various pathogens–Mycobacterium leprae, Mycobacterium abscessus and Mycobacterium tuberculosis (Mtb), the last one being the causative agent of the deadly disease Tuberculosis (TB), which claims millions of lives worldwide annually. The organism combats various stresses and alterations in its environment during the pathogenesis and virulence. During such adaptation, various metabolic pathways and transcriptional networks are reconfigured. Considering their global regulatory role, DNA topoisomerases and genome supercoiling may have an influence on the mycobacterial survival and adaptation. Biochemical studies from our laboratory have revealed several distinctive characteristics of mycobacterial DNA gyrase and topoisomerase I. DNA gyrase has been shown to be a strong decatenase apart from its characteristic supercoiling activity. Similarly, the mycobacterial topoisomerase I exhibits several distinct features such as the ability to bind both single- as well as double-stranded DNA, site specific DNA binding and absence of Zn2+ fingers required for DNA relaxation activity in other Type I enzymes. Although, efforts have been made to understand the biochemistry and mechanism of mycobacterial topoisomerases, in vivo significance and regulatory roles remain to be explored. The present study is aimed at understanding the mechanism, in vivo functions, regulation and genome wide distribution of mycobacterial topoisomerases. Chapter 1 of the thesis provides introduction on DNA topology, genome supercoiling and DNA topoisomerases. The importance of genome supercoiling and its regulatory roles has been discussed. Further, the regulation of topoisomerase activity and the role in the virulence gene regulation is described. Finally, a brief overview of Mtb genome, disease epidemiology, and pathogenesis is presented along with the description of the work on mycobacterial topoisomerases. In Chapter 2, the studies are directed to understand the DNA relaxation mechanism of mycobacterial Type IA topoisomerase which lack Zn2+ fingers. The N-terminal domain (NTD) of the Type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli TopoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial TopoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. It is elucidated that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the strand passage step of the catalysis. It is hypothesized that the loss of Zn2+ fingers from the mycobacterial TopoI could be associated with Zn2+ export and homeostasis. In Chapter 3, the studies have been carried out to understand the regulation of mycobacterial TopoI. Identification of Transcription Start Site (TSS) suggested the presence of multiple promoters which were found to be sensitive to genome supercoiling. The promoter activity was found to be specific to mycobacteria as the promoter(s) did not show activity in E. coli. Analysis of the putative promoter elements suggested the non-optimal spacing of the putative -35 and -10 promoter elements indicating the involvement of supercoiling for the optimal alignment during the transcription. Moreover, upon genome relaxation, the occupancy of RNA polymerase was decreased on the promoter region of topoI gene implicating the role of DNA topology in the Supercoiling Sensitive Transcription (SST) of TopoI gene from mycobacteria. The involvement of intrinsic promoter elements in such regulation has been proposed. In Chapter 4, the importance of TopoI for the Mtb growth and survival has been validated. Mtb contains only one Type IA topoisomerase (Rv3646c), a sole DNA relaxase in the cell, and hence a candidate drug target. To validate the essentiality of Mtb topoisomerase I for bacterial growth and survival, conditionally regulated strain of topoI in Mtb was generated. The conditional knockdown mutant exhibited delayed growth on agar plate and in liquid culture the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the Mtb growth and open up new avenues for targeting the enzyme. In Chapter 5, the influence of perturbation of TopoI activity on the Msm growth and physiology has been studied. Notably, Msm contains an additional DNA relaxation enzyme– an atypical Type II topoisomerase TopoNM. The TopoI depleted strain exhibited slow growth and drastic change in phenotypic characters. Moreover, the genome architecture was disturbed upon depletion of TopoI. Further, the proteomic and transcript analysis indicated the altered expression of the genes involved in central metabolic pathways and core DNA transaction processes in the mutant. The study suggests the importance of TopoI in the maintenance of cellular phenotype and growth characteristics of fast growing mycobacteria having additional topoisomerases. In Chapter 6, the ChIP-Seq method is used to decipher the genome wide distribution of the DNA gyrase, topoisomerase I (TopoI) and RNA polymerase (RNAP). Analysis of the ChIP-Seq data revealed the genome wide distribution of topoisomerases along with RNAP. Importantly, the signals of topoisomerases and RNAP was found to be co-localized on the genome suggesting their functional association in the twin supercoiled domain model, originally proposed by J. C. Wang. Closer inspection of the occupancy profile of topoisomerases and RNAP on transcription units (TUs) revealed their co-existence validating the topoisomerases occupancy within the twin supercoiled domains. On the genomic scale, the distribution of topoisomerases was found to be more at the ori domains compared to the ter domain which appeared to be an attribute of higher torsional stress at ori. The reappearance of gyrase binding at the ter domain (and the lack of it in the ter domain of E. coli) suggests a role for Mtb gyrase in the decatenation of the daughter chromosomes at the end of replication.

Page generated in 0.3316 seconds