• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Future of Mosquito Control: Wolbachia and Genome Editing

Kaahui, Soncy 01 January 2019 (has links)
The impact that mosquitoes and vector-borne diseases have on humans is vast and continues to grow with our expanding global interactions, such as international travel and shipping, so the need for effective vector controls is imperative. Aedes aegypti is a species of mosquito that spreads some of the most common vector-borne diseases, including zika virus, dengue fever, chikungunya, and yellow fever. A. aegypti have yet to be successfully contained, so they are favorable targets for implementing these new vector-control techniques. A review of scientific literature was performed from 1965 to present, timeline was constructed of studies on A. aegypti and their diseases, with inclusion criteria of techniques like bacterial controls and genome editing. Bacterial controls, such as using an endosymbiont like Wolbachia, can result in sterilization of mosquitoes as well as inhibiting the ability for mosquitoes to be infected by pathogens. Genome editing techniques involve CRISPR and gene drives, allowing the manipulation of certain genes to decrease fitness or susceptibility of pathogens. Combining newly discovered genes that play a role in sterilization with the introduction of sterilizing Wolbachia bacteria could result in a more effective method for controlling A. aegypti. Neither technique is known to be entirely effective on its own, but research indicates that highly effective vector-controls could be developed by combining aspects from both fields.

Page generated in 0.0817 seconds