Spelling suggestions: "subject:"bagofwords"" "subject:"cordwords""
1 |
S4FE : sequential feature frequency filter - front-end for SLAMFranco, Guilherme Schvarcz January 2016 (has links)
Fechamento de loops é um dos principais processos das estratégias de SLAM baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem criar uma conexão entre dois nós do grafo que está sendo construído para representar o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um estado irreversível de falsa representação do ambiente. Neste trabalho, um método robusto baseado em features que usa sequências de imagens para reconhecer áreas revisitadas é apresentado. Este método usa a abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso, um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de similaridade para identificar a possível trajetória seguida pelo robô e melhorar a detecção de fechamento de loop. O método apresentado foi testado em um ambiente aberto usando sequências de imagens coletadas com usando uma câmera de mão e um drone modelo Parrot ArDrone 2.0. / Loop closure recognition is one of the main processes of graph-based SLAM strategies, used to estimate the accumulated motion error to be minimized by the technique. Good scene correspondences allow to create constraints between two nodes in the graph that is currently being built to represent the environment that the robot is immersed. However, false correspondences can lead these strategies to an irreversible wrong environment representation. In this work, we present a robust feature-based loop closure approach that uses image sequence matching to recognize revisited areas. This approach uses Bag-of- Words to reduce the effects of lightning changes and a TF-IDF weighting to enhance the main features that describe each scene. Besides, an algorithm based on Mean Shift is used over a similarity matrix to identify the possible trajectory followed by the robot and improve the loop closure detection. Our method is tested in a GPS-denied outdoor environment using image sequences collected using a handheld camera and a Parrot ArDrone 2.0.
|
2 |
S4FE : sequential feature frequency filter - front-end for SLAMFranco, Guilherme Schvarcz January 2016 (has links)
Fechamento de loops é um dos principais processos das estratégias de SLAM baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem criar uma conexão entre dois nós do grafo que está sendo construído para representar o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um estado irreversível de falsa representação do ambiente. Neste trabalho, um método robusto baseado em features que usa sequências de imagens para reconhecer áreas revisitadas é apresentado. Este método usa a abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso, um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de similaridade para identificar a possível trajetória seguida pelo robô e melhorar a detecção de fechamento de loop. O método apresentado foi testado em um ambiente aberto usando sequências de imagens coletadas com usando uma câmera de mão e um drone modelo Parrot ArDrone 2.0. / Loop closure recognition is one of the main processes of graph-based SLAM strategies, used to estimate the accumulated motion error to be minimized by the technique. Good scene correspondences allow to create constraints between two nodes in the graph that is currently being built to represent the environment that the robot is immersed. However, false correspondences can lead these strategies to an irreversible wrong environment representation. In this work, we present a robust feature-based loop closure approach that uses image sequence matching to recognize revisited areas. This approach uses Bag-of- Words to reduce the effects of lightning changes and a TF-IDF weighting to enhance the main features that describe each scene. Besides, an algorithm based on Mean Shift is used over a similarity matrix to identify the possible trajectory followed by the robot and improve the loop closure detection. Our method is tested in a GPS-denied outdoor environment using image sequences collected using a handheld camera and a Parrot ArDrone 2.0.
|
3 |
S4FE : sequential feature frequency filter - front-end for SLAMFranco, Guilherme Schvarcz January 2016 (has links)
Fechamento de loops é um dos principais processos das estratégias de SLAM baseadas em grafos, usadas para estimar o erro de deslocamento acumulado à ser minimizado pela técnica. Neste sentido, boas correspondências de cenas permitem criar uma conexão entre dois nós do grafo que está sendo construído para representar o ambiente. Contudo, falsas correspondências podem levar essas estratégias a um estado irreversível de falsa representação do ambiente. Neste trabalho, um método robusto baseado em features que usa sequências de imagens para reconhecer áreas revisitadas é apresentado. Este método usa a abordagem de Bag-of-Words para reduzir efeitos de iluminação e uma ponderação TF-IDF para ressaltar as principais features que descrevem cada cena. Além disso, um algoritmo baseado na técnica de Mean Shift é usado sobre uma matriz de similaridade para identificar a possível trajetória seguida pelo robô e melhorar a detecção de fechamento de loop. O método apresentado foi testado em um ambiente aberto usando sequências de imagens coletadas com usando uma câmera de mão e um drone modelo Parrot ArDrone 2.0. / Loop closure recognition is one of the main processes of graph-based SLAM strategies, used to estimate the accumulated motion error to be minimized by the technique. Good scene correspondences allow to create constraints between two nodes in the graph that is currently being built to represent the environment that the robot is immersed. However, false correspondences can lead these strategies to an irreversible wrong environment representation. In this work, we present a robust feature-based loop closure approach that uses image sequence matching to recognize revisited areas. This approach uses Bag-of- Words to reduce the effects of lightning changes and a TF-IDF weighting to enhance the main features that describe each scene. Besides, an algorithm based on Mean Shift is used over a similarity matrix to identify the possible trajectory followed by the robot and improve the loop closure detection. Our method is tested in a GPS-denied outdoor environment using image sequences collected using a handheld camera and a Parrot ArDrone 2.0.
|
4 |
Article identification for inventory list in a warehouse environmentGao, Yang January 2014 (has links)
In this paper, an object recognition system has been developed that uses local image features. In the system, multiple classes of objects can be recognized in an image. This system is basically divided into two parts: object detection and object identification. Object detection is based on SIFT features, which are invariant to image illumination, scaling and rotation. SIFT features extracted from a test image are used to perform a reliable matching between a database of SIFT features from known object images. Method of DBSCAN clustering is used for multiple object detection. RANSAC method is used for decreasing the amount of false detection. Object identification is based on 'Bag-of-Words' model. The 'BoW' model is a method based on vector quantization of SIFT descriptors of image patches. In this model, K-means clustering and Support Vector Machine (SVM) classification method are applied.
|
5 |
Semantic Movie Scene Segmentation Using Bag-of-Words Representationluo, sai 07 December 2017 (has links)
No description available.
|
6 |
Modelovanje i pretraživanje nad nestruktuiranim podacima i dokumentima u e-Upravi Republike Srbije / Modeling and searching over unstructured data and documents in e-Government of the Republic of SerbiaNikolić Vojkan 27 September 2016 (has links)
<p>Danas, servisi e-Uprave u različitim oblastima koriste question answer sisteme koncepta u pokušaju da se razume tekst i da pomognu građanima u dobijanju odgovora na svoje upite u bilo koje vreme i veoma brzo. Automatsko mapiranje relevantnih dokumenata se ističe kao važna aplikacija za automatsku strategiju klasifikacije: upit-dokumenta. Ova doktorska disertacija ima za cilj doprinos u identifikaciji nestruktuiranih dokumenata i predstavlja važan korak ka razjašnjavanju uloge eksplicitnih koncepata u pronalaženju podataka uopšte ajčeš a reprezenta vna šema u tekstualnoj kategorizaciji je BoW pristup, kada je u pozadini veliki skup znanja. Ova disertacija uvodi novi pristup ka stvaranju koncepta zasnovanog na tekstualnoj prezantaciji i primeni kategorizacije teksta, kako bi se stvorile definisane klase u slučaju sažetih tekstualnih dokumenata Takođe, ovde je prikazan algoritam zasnovan na klasifikaciji, modelovan za upite koji odgovaraju temi. Otežavaju a okolnost u slučaju ovog koncepta, koji prezentuje termine sa visokom frekvencijom pojavljivanja u upitma, zasniva se na sličnostima u prethodno definisanim klasama dokumenata Rezultati eksperimenta iz oblasti Krivičnog zakonika Republike Srbije, u ovom slučaju i studija, pokazuju da prezentacija teksta zasnovana na konceptu ima zadovoljavaju e rezultate i u slučaju kada ne postoji rečnik za datu oblast.</p> / <p>Nowadays, the concept of Question Answering Systems (QAS) has been used by e-government services in various fields as an attempt to understand the text and help citizens in getting answers to their questions promptly and at any time. Automatic mapping of relevant documents stands out as an important application for automatic classification strategy: query-document. This doctoral thesis aims to contribute to identification of unstructured documents and represents an important step towards clarifying the role of explicit concepts within Information Retrieval in general. The most common scheme in text categorization is BoW approach, especially when, as a basis, we have a large set of knowledge. This thesis introduces a new approach to the creation of text presentation based concept and applying text categorization, with the aim to create a defined class in case of compressed text documents.Also, this paper discusses the classification based algorithm modeled for queries that suit the theme. What makes the situation more complicated is the fact that this concept is based on the similarities in previously defined classes of documents and terms with a high frequency of appearance presented in queries. The results of the experiment in the field of the Criminal Code, and this paper as well, show that the text presentation based concept has satisfactory results even in case where there is no vocabulary for certain field.</p>
|
7 |
ROZPOZNÁNÍ ČINNOSTÍ ČLOVĚKA VE VIDEU / HUMAN ACTION RECOGNITION IN VIDEOŘezníček, Ivo January 2014 (has links)
Tato disertační práce se zabývá vylepšením systémů pro rozpoznávání činností člověka. Současný stav vědění v této oblasti jest prezentován. Toto zahrnuje způsoby získávání digitálních obrazů a videí společně se způsoby reprezentace těchto entit za použití počítače. Dále jest prezentováno jak jsou použity extraktory příznakových vektorů a extraktory pros- torově-časových příznakových vektorů a způsoby přípravy těchto dat pro další zpracování. Příkladem následného zpracování jsou klasifikační metody. Pro zpracování se obecně obvykle používají části videa s proměnlivou délkou. Hlavní přínos této práce je vyřčená hypotéza o optimální délce analýzy video sekvence, kdy kvalita řešení je porovnatelná s řešením bez restrikce délky videosekvence. Algoritmus pro ověření této hypotézy jest navržen, implementován a otestován. Hypotéza byla experimentálně ověřena za použití tohoto algoritmu. Při hledání optimální délky bylo též dosaženo jistého zlepšení kvality klasifikace. Experimenty, výsledky a budoucí využití této práce jsou taktéž prezentovány.
|
8 |
Visual navigation for mobile robots using the Bag-of-Words algorithmBotterill, Tom January 2011 (has links)
Robust long-term positioning for autonomous mobile robots is essential for many applications. In many
environments this task is challenging, as errors accumulate in the robot’s position estimate over time. The
robot must also build a map so that these errors can be corrected when mapped regions are re-visited; this
is known as Simultaneous Localisation and Mapping, or SLAM.
Successful SLAM schemes have been demonstrated which accurately map tracks of tens of kilometres, however
these schemes rely on expensive sensors such as laser scanners and inertial measurement units. A more
attractive, low-cost sensor is a digital camera, which captures images that can be used to recognise where
the robot is, and to incrementally position the robot as it moves. SLAM using a single camera is challenging
however, and many contemporary schemes suffer complete failure in dynamic or featureless environments, or
during erratic camera motion. An additional problem, known as scale drift, is that cameras do not directly
measure the scale of the environment, and errors in relative scale accumulate over time, introducing errors
into the robot’s speed and position estimates.
Key to a successful visual SLAM system is the ability to continue operation despite these difficulties, and
to recover from positioning failure when it occurs. This thesis describes the development of such a scheme,
which is known as BoWSLAM. BoWSLAM enables a robot to reliably navigate and map previously unknown
environments, in real-time, using only a single camera.
In order to position a camera in visually challenging environments, BoWSLAM combines contemporary visual
SLAM techniques with four new components. Firstly, a new Bag-of-Words (BoW) scheme is developed, which
allows a robot to recognise places it has visited previously, without any prior knowledge of its environment.
This BoW scheme is also used to select the best set of frames to reconstruct positions from, and to find
efficient wide-baseline correspondences between many pairs of frames. Secondly, BaySAC, a new outlier-
robust relative pose estimation scheme based on the popular RANSAC framework, is developed. BaySAC
allows the efficient computation of multiple position hypotheses for each frame. Thirdly, a graph-based
representation of these position hypotheses is proposed, which enables the selection of only reliable position
estimates in the presence of gross outliers. Fourthly, as the robot explores, objects in the world are recognised
and measured. These measurements enable scale drift to be corrected. BoWSLAM is demonstrated mapping
a 25 minute 2.5km trajectory through a challenging and dynamic outdoor environment in real-time, and
without any other sensor input; considerably further than previous single camera SLAM schemes.
|
9 |
Improving the Chatbot Experience : With a Content-based Recommender SystemGardner, Angelica January 2019 (has links)
Chatbots are computer programs with the capability to lead a conversation with a human user. When a chatbot is unable to match a user’s utterance to any predefined answer, it will use a fallback intent; a generic response that does not contribute to the conversation in any meaningful way. This report aims to investigate if a content-based recommender system could provide support to a chatbot agent in case of these fallback experiences. Content-based recommender systems use content to filter, prioritize and deliver relevant information to users. Their purpose is to search through a large amount of content and predict recommendations based on user requirements. The recommender system developed in this project consists of four components: a web spider, a Bag-of-words model, a graph database, and the GraphQL API. The anticipation was to capture web page articles and rank them with a numeric scoring to figure out which articles that make for the best recommendation concerning given subjects. The chatbot agent could then use these recommended articles to provide the user with value and help instead of a generic response. After the evaluation, it was found that the recommender system in principle fulfilled all requirements, but that the scoring algorithm used could achieve significant improvements in its recommendations if a more advanced algorithm would be implemented. The scoring algorithm used in this project is based on word count, which lacks taking the context of the dialogue between the user and the agent into consideration, among other things.
|
10 |
Evaluating the effect of different distances on the pixels per object and image classificationSamaei, Amiryousef January 2015 (has links)
In the last decades camera systems have continuously evolved and have found wide range of applications. One of the main applications of a modern camera system is surveillance in outdoor areas. The camera system, based on local computations, can detect and classify objects autonomously. However, the distance of the objects from the camera plays a vital role on the classification results. This could be specially challenging when lighting conditions are varying. Therefore, in this thesis, we are examining the effect of changing dis-tances on object in terms of number of pixels. In addition, the effect of distance on classification is studied by preparing four different sets. For consideration of high signal to noise ratio, we are integrating thermal and visual image sensors for the same test in order to achieve better spectral resolution. In this study, four different data sets, thermal, visu-al, binary from visual and binary from thermal have been prepared to train the classifier. The categorized objects include bicycle, human and vehicle. Comparative studies have been performed in order to identify the data sets accuracy. It has been demonstrated that for fixed distances bi-level data sets, obtained from visual images, have better accuracy. By using our setup, the object (human) with a length of 179 and width of 30 has been classified correctly with minor error up to 150 meters for thermal, visual as well as binary from visual. Moreover, for bi-level images from thermal, the human object has been correctly classified as far away as 250 meters.
|
Page generated in 0.025 seconds