• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 8
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 14
  • 14
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Descripteurs augmentés basés sur l'information sémantique contextuelle / Toward semantic-shape-context-based augmented descriptor

Khoualed, Samir 29 November 2012 (has links)
Les techniques de description des éléments caractéristiques d’une image sont omniprésentes dans de nombreuses applications de vision par ordinateur. Nous proposons à travers ce manuscrit une extension, pour décrire (représenter) et apparier les éléments caractéristiques des images. L’extension proposée consiste en une approche originale pour apprendre, ou estimer, la présence sémantique des éléments caractéristiques locaux dans les images. L’information sémantique obtenue est ensuite exploitée, en conjonction avec le paradigme de sac-de-mots, pour construire un descripteur d’image performant. Le descripteur résultant, est la combinaison de deux types d’informations, locale et contextuelle-sémantique. L’approche proposée peut être généralisée et adaptée à n’importe quel descripteur local d’image, pour améliorer fortement ses performances spécialement quand l’image est soumise à des conditions d’imagerie contraintes. La performance de l’approche proposée est évaluée avec des images réelles aussi bien dans les deux domaines, 2D que 3D. Nous avons abordé dans le domaine 2D, un problème lié à l’appariement des éléments caractéristiques dans des images. Dans le domaine 3D, nous avons résolu les problèmes d’appariement et alignement des vues partielles tridimensionnelles. Les résultats obtenus ont montré qu’avec notre approche, les performances sont nettement meilleures par rapport aux autres méthodes existantes. / This manuscript presents an extension of feature description and matching strategies by proposing an original approach to learn the semantic information of local features. This semantic is then exploited, in conjunction with the bag-of-words paradigm, to build a powerful feature descriptor. The approach, ended up by combining local and context information into a single descriptor, is also a generalized method for improving the performance of the local features, in terms of distinctiveness and robustness under geometric image transformations and imaging conditions. The performance of the proposed approach is evaluated on real world data sets as well as in both the 2D and 3D domains. The 2D domain application addresses the problem of image feature matching while in 3D domain, we resolve the issue of matching and alignment of multiple range images. The evaluation results showed our approach performs significantly better than expected results as well as in comparison with other methods.
32

Robot semantic place recognition based on deep belief networks and a direct use of tiny images / Robot de reconnaissance des lieux sémantiques basée sur l'architecture profonde et une utilisation directe de mini-images

Hasasneh, Ahmad 23 November 2012 (has links)
Il est généralement facile pour les humains de distinguer rapidement différents lieux en se basant uniquement sur leur aspect visuel. . Ces catégories sémantiques peuvent être utilisées comme information contextuelle favorisant la détection et la reconnaissance d'objets. Des travaux récents en reconnaissance des lieux visent à doter les robots de capacités similaires. Contrairement aux travaux classiques, portant sur la localisation et la cartographie, cette tâche est généralement traitée comme un problème d'apprentissage supervisé.La reconnaissance de lieux sémantiques - la capacité à reconnaître la catégorie sémantique à laquelle une scène appartient – peut être considérée comme une condition essentielle en robotique autonome. Un robot autonome doit en effet pouvoir apprendre facilement l'organisation sémantique de son environnement pour pouvoir fonctionner et interagir avec succès. Pour atteindre cet objectif, différentes méthodes ont déjà été proposées. Certaines sont basées sur l'identification des objets comme une condition préalable à la reconnaissance des scènes, et d'autres fondées sur une description directe des caractéristiques de la scène. Si nous faisons l'hypothèse que les objets sont plus faciles à reconnaître quand la scène dans laquelle ils apparaissent est bien identifiée, la deuxième approche semble plus appropriée. Elle est cependant fortement dépendante de la nature des descripteurs d'images utilisées qui sont généralement dérivés empiriquement a partir des observations générales sur le codage d'images.En opposition avec ces propositions, une autre approche de codage des images, basée sur un point de vue plus théorique, a émergé ces dernières années. Les modèles d'extraction de caractéristiques fondés sur le principe de la minimisation d'une fonction d'énergie en relation avec un modèle statistique génératif expliquant au mieux les données, ont abouti à l'apparition des Machines de Boltzmann Restreintes (Rectricted Boltzmann Machines : RBMs) capables de coder une image comme la superposition d'un nombre limité de caractéristiques extraites à partir d'un plus grand alphabet. Il a été montré que ce processus peut être répété dans une architecture plus profonde, conduisant à une représentation parcimonieuse et efficace des données initiales dans l'espace des caractéristiques. Le problème complexe de la classification dans l'espace de début est ainsi remplacé par un problème plus simple dans l'espace des caractéristiques.Dans ce travail, nous montrons que la reconnaissance sémantiques des lieux peut être réalisée en considérant des mini-images au lieu d'approches plus classiques de type ''sacs-de-mots'' et par l'utilisation de réseaux profonds pour le codage des images. Après avoir realisé un codage approprié, une régression softmax dans l'espace de projection est suffisante pour obtenir des résultats de classification prometteurs. A notre connaissance, cette approche n'a pas encore été proposée pour la reconnaissance de scène en robotique autonome.Nous avons comparé nos méthodes avec les algorithmes de l'état-de-l'art en utilisant une base de données standard de localisation de robot. Nous avons étudié l'influence des paramètres du système et comparé les différentes conditions sur la même base de données. Les expériences réalisées montrent que le modèle que nous proposons, tout en étant très simple, conduit à des résultats comparables à l'état-de-l'art sur une tâche de reconnaissance de lieux sémantiques. / Usually, human beings are able to quickly distinguish between different places, solely from their visual appearance. This is due to the fact that they can organize their space as composed of discrete units. These units, called ``semantic places'', are characterized by their spatial extend and their functional unity. Such a semantic category can thus be used as contextual information which fosters object detection and recognition. Recent works in semantic place recognition seek to endow the robot with similar capabilities. Contrary to classical localization and mapping works, this problem is usually addressed as a supervised learning problem. The question of semantic places recognition in robotics - the ability to recognize the semantic category of a place to which scene belongs to - is therefore a major requirement for the future of autonomous robotics. It is indeed required for an autonomous service robot to be able to recognize the environment in which it lives and to easily learn the organization of this environment in order to operate and interact successfully. To achieve that goal, different methods have been already proposed, some based on the identification of objects as a prerequisite to the recognition of the scenes, and some based on a direct description of the scene characteristics. If we make the hypothesis that objects are more easily recognized when the scene in which they appear is identified, the second approach seems more suitable. It is however strongly dependent on the nature of the image descriptors used, usually empirically derived from general considerations on image coding.Compared to these many proposals, another approach of image coding, based on a more theoretical point of view, has emerged the last few years. Energy-based models of feature extraction based on the principle of minimizing the energy of some function according to the quality of the reconstruction of the image has lead to the Restricted Boltzmann Machines (RBMs) able to code an image as the superposition of a limited number of features taken from a larger alphabet. It has also been shown that this process can be repeated in a deep architecture, leading to a sparse and efficient representation of the initial data in the feature space. A complex problem of classification in the input space is thus transformed into an easier one in the feature space. This approach has been successfully applied to the identification of tiny images from the 80 millions image database of the MIT. In the present work, we demonstrate that semantic place recognition can be achieved on the basis of tiny images instead of conventional Bag-of-Word (BoW) methods and on the use of Deep Belief Networks (DBNs) for image coding. We show that after appropriate coding a softmax regression in the projection space is sufficient to achieve promising classification results. To our knowledge, this approach has not yet been investigated for scene recognition in autonomous robotics. We compare our methods with the state-of-the-art algorithms using a standard database of robot localization. We study the influence of system parameters and compare different conditions on the same dataset. These experiments show that our proposed model, while being very simple, leads to state-of-the-art results on a semantic place recognition task.
33

Classification de séries temporelles avec applications en télédétection / Time Series Classification Algorithms with Applications in Remote Sensing

Bailly, Adeline 25 May 2018 (has links)
La classification de séries temporelles a suscité beaucoup d’intérêt au cours des dernières années en raison de ces nombreuses applications. Nous commençons par proposer la méthode Dense Bag-of-Temporal-SIFT-Words (D-BoTSW) qui utilise des descripteurs locaux basés sur la méthode SIFT, adaptés pour les données en une dimension et extraits à intervalles réguliers. Des expériences approfondies montrent que notre méthode D-BoTSW surpassent de façon significative presque tous les classificateurs de référence comparés. Ensuite, nous proposons un nouvel algorithmebasé sur l’algorithme Learning Time Series Shapelets (LTS) que nous appelons Adversarially- Built Shapelets (ABS). Cette méthode est basée sur l’introduction d’exemples adversaires dans le processus d’apprentissage de LTS et elle permet de générer des shapelets plus robustes. Des expériences montrent une amélioration significative de la performance entre l’algorithme de base et notre proposition. En raison du manque de jeux de données labelisés, formatés et disponibles enligne, nous utilisons deux jeux de données appelés TiSeLaC et Brazilian-Amazon. / Time Series Classification (TSC) has received an important amount of interest over the past years due to many real-life applications. In this PhD, we create new algorithms for TSC, with a particular emphasis on Remote Sensing (RS) time series data. We first propose the Dense Bag-of-Temporal-SIFT-Words (D-BoTSW) method that uses dense local features based on SIFT features for 1D data. Extensive experiments exhibit that D-BoTSW significantly outperforms nearly all compared standalone baseline classifiers. Then, we propose an enhancement of the Learning Time Series Shapelets (LTS) algorithm called Adversarially-Built Shapelets (ABS) based on the introduction of adversarial time series during the learning process. Adversarial time series provide an additional regularization benefit for the shapelets and experiments show a performance improvementbetween the baseline and our proposed framework. Due to the lack of available RS time series datasets,we also present and experiment on two remote sensing time series datasets called TiSeLaCand Brazilian-Amazon
34

Aplicação do Word2vec e do Gradiente descendente dstocástico em tradução automática

Aguiar, Eliane Martins de 30 May 2016 (has links)
Submitted by Eliane Martins de Aguiar (elianemart@gmail.com) on 2016-08-01T21:03:09Z No. of bitstreams: 1 dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-08-03T20:29:34Z (GMT) No. of bitstreams: 1 dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Maria Almeida (maria.socorro@fgv.br) on 2016-08-23T20:12:35Z (GMT) No. of bitstreams: 1 dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Made available in DSpace on 2016-08-23T20:12:54Z (GMT). No. of bitstreams: 1 dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) Previous issue date: 2016-05-30 / O word2vec é um sistema baseado em redes neurais que processa textos e representa pa- lavras como vetores, utilizando uma representação distribuída. Uma propriedade notável são as relações semânticas encontradas nos modelos gerados. Este trabalho tem como objetivo treinar dois modelos utilizando o word2vec, um para o Português e outro para o Inglês, e utilizar o gradiente descendente estocástico para encontrar uma matriz de tradução entre esses dois espaços.
35

Příznaky z videa pro klasifikaci / Video Feature for Classification

Behúň, Kamil January 2013 (has links)
This thesis compares hand-designed features with features learned by feature learning methods in video classification. The features learned by Principal Component Analysis whitening, Independent subspace analysis and Sparse Autoencoders were tested in a standard Bag of Visual Word classification paradigm replacing hand-designed features (e.g. SIFT, HOG, HOF). The classification performance was measured on Human Motion DataBase and YouTube Action Data Set. Learned features showed better performance than the hand-desined features. The combination of hand-designed features and learned features by Multiple Kernel Learning method showed even better performance, including cases when hand-designed features and learned features achieved not so good performance separately.
36

Detekce objektů pomocí Kinectu / Object Detection Using Kinect

Řehánek, Martin January 2012 (has links)
With the release of the Kinect device new possibilities appeared, allowing a simple use of image depth in image processing. The aim of this thesis is to propose a method for object detection and recognition in a depth map. Well known method Bag of Words and a descriptor based on Spin Image method are used for the object recognition. The Spin Image method is one of several existing approaches to depth map which are described in this thesis. Detection of object in picture is ensured by the sliding window technique. That is improved and speeded up by utilization of the depth information.
37

Lokalizace mobilního robota v prostředí / Localisation of Mobile Robot in the Environment

Němec, Lukáš January 2016 (has links)
This paper addresses the problem of mobile robot localization based on current 2D and 3D data and previous records. Focusing on practical loop detection in the trajectory of a robot. The objective of this work was to evaluate current methods of image processing and depth data for issues of localization in environment. This work uses Bag of Words for 2D data and environment of point cloud with Viewpoint Feature Histogram for 3D data. Designed system was implemented and evaluated.
38

An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

Le, Thu Anh 05 1900 (has links)
This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.
39

Automatic Detection of Brain Functional Disorder Using Imaging Data

Dey, Soumyabrata 01 January 2014 (has links)
Recently, Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention mainly for two reasons. First, it is one of the most commonly found childhood behavioral disorders. Around 5-10% of the children all over the world are diagnosed with ADHD. Second, the root cause of the problem is still unknown and therefore no biological measure exists to diagnose ADHD. Instead, doctors need to diagnose it based on the clinical symptoms, such as inattention, impulsivity and hyperactivity, which are all subjective. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool to understand the functioning of the brain such as identifying the brain regions responsible for different cognitive tasks or analyzing the statistical differences of the brain functioning between the diseased and control subjects. ADHD is also being studied using the fMRI data. In this dissertation we aim to solve the problem of automatic diagnosis of the ADHD subjects using their resting state fMRI (rs-fMRI) data. As a core step of our approach, we model the functions of a brain as a connectivity network, which is expected to capture the information about how synchronous different brain regions are in terms of their functional activities. The network is constructed by representing different brain regions as the nodes where any two nodes of the network are connected by an edge if the correlation of the activity patterns of the two nodes is higher than some threshold. The brain regions, represented as the nodes of the network, can be selected at different granularities e.g. single voxels or cluster of functionally homogeneous voxels. The topological differences of the constructed networks of the ADHD and control group of subjects are then exploited in the classification approach. We have developed a simple method employing the Bag-of-Words (BoW) framework for the classification of the ADHD subjects. We represent each node in the network by a 4-D feature vector: node degree and 3-D location. The 4-D vectors of all the network nodes of the training data are then grouped in a number of clusters using K-means; where each such cluster is termed as a word. Finally, each subject is represented by a histogram (bag) of such words. The Support Vector Machine (SVM) classifier is used for the detection of the ADHD subjects using their histogram representation. The method is able to achieve 64% classification accuracy. The above simple approach has several shortcomings. First, there is a loss of spatial information while constructing the histogram because it only counts the occurrences of words ignoring the spatial positions. Second, features from the whole brain are used for classification, but some of the brain regions may not contain any useful information and may only increase the feature dimensions and noise of the system. Third, in our study we used only one network feature, the degree of a node which measures the connectivity of the node, while other complex network features may be useful for solving the proposed problem. In order to address the above shortcomings, we hypothesize that only a subset of the nodes of the network possesses important information for the classification of the ADHD subjects. To identify the important nodes of the network we have developed a novel algorithm. The algorithm generates different random subset of nodes each time extracting the features from a subset to compute the feature vector and perform classification. The subsets are then ranked based on the classification accuracy and the occurrences of each node in the top ranked subsets are measured. Our algorithm selects the highly occurring nodes for the final classification. Furthermore, along with the node degree, we employ three more node features: network cycles, the varying distance degree and the edge weight sum. We concatenate the features of the selected nodes in a fixed order to preserve the relative spatial information. Experimental validation suggests that the use of the features from the nodes selected using our algorithm indeed help to improve the classification accuracy. Also, our finding is in concordance with the existing literature as the brain regions identified by our algorithms are independently found by many other studies on the ADHD. We achieved a classification accuracy of 69.59% using this approach. However, since this method represents each voxel as a node of the network which makes the number of nodes of the network several thousands. As a result, the network construction step becomes computationally very expensive. Another limitation of the approach is that the network features, which are computed for each node of the network, captures only the local structures while ignore the global structure of the network. Next, in order to capture the global structure of the networks, we use the Multi-Dimensional Scaling (MDS) technique to project all the subjects from an unknown network-space to a low dimensional space based on their inter-network distance measures. For the purpose of computing distance between two networks, we represent each node by a set of attributes such as the node degree, the average power, the physical location, the neighbor node degrees, and the average powers of the neighbor nodes. The nodes of the two networks are then mapped in such a way that for all pair of nodes, the sum of the attribute distances, which is the inter-network distance, is minimized. To reduce the network computation cost, we enforce that the maximum relevant information is preserved with minimum redundancy. To achieve this, the nodes of the network are constructed with clusters of highly active voxels while the activity levels of the voxels are measured based on the average power of their corresponding fMRI time-series. Our method shows promise as we achieve impressive classification accuracies (73.55%) on the ADHD-200 data set. Our results also reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects. So far, we have only used the fMRI data for solving the ADHD diagnosis problem. Finally, we investigated the answers of the following questions. Do the structural brain images contain useful information related to the ADHD diagnosis problem? Can the classification accuracy of the automatic diagnosis system be improved combining the information of the structural and functional brain data? Towards that end, we developed a new method to combine the information of structural and functional brain images in a late fusion framework. For structural data we input the gray matter (GM) brain images to a Convolutional Neural Network (CNN). The output of the CNN is a feature vector per subject which is used to train the SVM classifier. For the functional data we compute the average power of each voxel based on its fMRI time series. The average power of the fMRI time series of a voxel measures the activity level of the voxel. We found significant differences in the voxel power distribution patterns of the ADHD and control groups of subjects. The Local binary pattern (LBP) texture feature is used on the voxel power map to capture these differences. We achieved 74.23% accuracy using GM features, 77.30% using LBP features and 79.14% using combined information. In summary this dissertation demonstrated that the structural and functional brain imaging data are useful for the automatic detection of the ADHD subjects as we achieve impressive classification accuracies on the ADHD-200 data set. Our study also helps to identify the brain regions which are useful for ADHD subject classification. These findings can help in understanding the pathophysiology of the problem. Finally, we expect that our approaches will contribute towards the development of a biological measure for the diagnosis of the ADHD subjects.
40

Automatické třídění fotografií podle obsahu / Automatic Photography Categorization

Gajová, Veronika January 2012 (has links)
Purpose of this thesis is to design and implement a tool for automatic categorization of photos. The proposed tool is based on the Bag of Words classification method and it is realized as a plug-in for the XnView image viewer. The plug-in is able to classify a selected group of photos into predefined image categories. Subsequent notation of image categories is written directly into IPTC metadata of the picture as a keyword.

Page generated in 0.3077 seconds